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Hypersonic reacting flow modeling: present state-of-the-art

• Thermochemical mechanisms are tuned for ballistic reentry
• Mechanisms derived limited, "integral" experimental data
• Supported by ab initio calculations with uncertain potentials
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• Multiple parameters are inferred from single parameter data
• Non-unique, vulnerable to effect of compensating errors

".....these parameters cannot necessarily be considered
accurate or unique, there could be one or more sets of
thermochemical parameters that would lead to an equally
good agreement with the experimental data"
-Chul Park, NASA Ames Research Center
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Importance of nonequilibrium conditions

• Chemical mechanisms are valid "near equilibrium"

• Reaction rates are modified using thermodynamic
distributions which are frequently assumed

• Vibrational excitation has significant impact on rates

• Internal 4—► translational energy exchange affects
flow processes like transition to turbulence

Nonequilibrium conditions can be
significant in ground-test facilities
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I Sandia validation paradigm for hypersonic reacting flow

• Co-location and integration
• modeling
• high-enthalpy test facilities
• diagnostics

• High-speed diagnostic development
• Temperatures & distribution functions
• Quantitative reacting species data

• Shift hypersonic validation paradigm
• Reduce compensating errors
• Extrapolate models to real flight conditions

• Detailed validation facility characterization
with quantifiable uncertainties

• Capability demonstration
• Canonical normal shock (SPARTA DSMC)
• 'Capstone' high-enthalpy experiment
(SPARC)

High-enthalpy ground-test facilities
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Sandia's Free-Piston High-Temperature Shock Tube (HST)
Commission Shock
TunnelDesign shock tunnel for hypersonic, reacting

flight environments
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I Coherent anti-Stokes Raman scattering (CARS)

• Powerful laser spectroscopic tool
• Major species (N2, 02)
• Temperature
• Nonequilbrium states (Trot, Tvib)

• Distribution functions 
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I Coherent anti-Stokes Raman scattering (CARS)

• Powerful laser spectroscopic tool
• Major species (N2, 02)
• Temperature
• Nonequilbrium states (Trot, Tvib)

• Distribution functions a
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I Coherent anti-Stokes Raman scattering (CARS)

• Powerful laser spectroscopic tool
• Major species (N2, 02)
• Temperature
• Nonequilbrium states (Trot, Tvib)

• Distribution functions 
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I Coherent anti-Stokes Raman scattering (CARS)

• Powerful laser spectroscopic tool
• Major species (N2, 02)
• Temperature
• Nonequilbrium states (Trot, Tvib)

• Distribution functions 

CARS measurements in nonequilibrium 
shock layer
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I CARS Measurements in a nonequilibrium plasma

Dedic, Meyer, and Michael, "Single-shot ultrafast coherent anti-Stokes Raman
scattering of vibrational/rotational nonequilibrium," Optica 4, 563-569 (2017).

• Simultaneous pure-rotational and (a)

vibrational Raman spectra

• Direct measurement of distribution
functions

• Signal scales with Nv2J

• Single-shot detection limits?
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High-speed diagnostics 11: LIF
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1 High-speed diagnostics 11: LIF

Excited
Electronic
State

Laser
Photon B12
Absorption

Ground
Electronic
State

Collisional
Losses

Q21

Fluorescence
Emission

A23

Intermediate
Electronic 3
State

Quantitative species measurements
with knowledge of Q2 1

• NO, 0, N have all been demonstrated

• Successful single-shot applications in
shock tunnels

• 2D or 1D line imaging capability

• Temperature imaging in NO
also possible (risk mitigation) 
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. Tunable burst-mode laser development

• Burst-mode lasers have allowed
experimentalists to access high-speeds
(10s to 100s of kHz)

• While powerful, these systems are not
wavelength tunable—this prohibits
application of chemically specific imaging
and spectroscopic tools

Burst Mode
Nd:YAG Laser

fixed wavelength! 
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I Our solution:Tunable burst-mode laser development

• Burst-mode lasers have allowed
experimentalists to access high-speeds
(10s to 100s of kHz)

• While powerful, these systems are not
wavelength tunable—this prohibits
application of chemically specific imaging
and spectroscopic tools

Dye Laser Technology

Burst Mode
Nd:YAG Laser

fixed wavelength! 

✓ Liquid dye gain medium

✓ Excellent broadband performance (CARS)

✓ Flexible, tunable, simple to align and maintain

✓ Two recent demonstrations for burst-mode LIF

# More susceptible to optical damage

* Dye saturation "bleaching" and thermal degradation
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✓ All solid-state design

✓ Multiple demonstrations for burst-mode LIF
(NO, OH)

✓ Singe demonstration (ps) for burst-mode
CARS on H2

* Difficult to maintain and align

* Decreased flexibility



I Tunable Sources: Risk Mitigation

Technical Risk

NO LIF 0-atom LIF CARS

Multiple Risk-Mitigation Pathways 

Picosecond Burst-Mode Pulses

• More effective for 2-photon
schemes (0-atom, CARS)

• Single demonstration for H2
CARS in flames
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• Proven for NO, OH LIF
• Demonstrated (ps) for

CARS
• Not demonstrated for

atomic LIF

2-D and 1-D Imaging
at Reduced Rates 

• High single-shot data yields
• Previous shock-tunnel LIF
• Single-shot or reduced

burst-rate pump

Danehy et al. (1999) 1
55

'
L
W
 I
nt

en
si

t 
a
.
u
.
,
 

o

300

250

200

150

12 100

15

2'1200
2 1000

E2 800
cu
g 600

12 400

25
1

-(b) oc)0 100-kHz H2 CARS
° 0 0

07 C 113:;Rry e t a lc.) (20Dcbcc915) ()0c9)Q° c5O cb ct7i.

0.0 0.1 0.2 0.3
Time (ms)

0.4 0 5

Alternative Diagnostics

• Diode laser absorption
• Spontaneous Raman

scattering

Kearney et al. (2019) "°
8

50 
0

• Region 1
A Region 2
• Region 3
• ColRegion 3A

lision-Free Result

7

•

5 10
Distance From Nozzle (rnm)

15

1-D CARS thermometry
across a shock layer

Vib. Dist!.
Function

Raman
Spectra
T = 5600 K

1
1

•a
Vibraoanal



I Pulse-Burst Raman Spectra: Early Results at 5 kHz

• Raman spectra at data rates

• Goal is 10-20 kHz for free-piston facility at
high densities

• No tunable source required

• Spectra obtained at 5 kHz in near-adiabatic
H2/air flame

• Spontaneous Raman signals are orders of
magnitude less than CARS

• Signal scales directly with /q v, j
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This 3-year LDRD will demonstrate quantifiable validation capabilities

Target Canonical Experiments

1. Canonical normal-shock experiment (SPARTA/DSMC)
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Project plan: Milestones and Objectives

Objectives (0) and Milestones (M) FY20 FY21 FY22

01 Development of flexible and tunable burst-mode sources

M1.1 Frequency-narrow dye laser at 30-50 kHz (LIF) 440

M1.2 Broadband dye laser 30-50 kHz(CARS) at (CARS) 41.

M1.3 Risk mitigation option: optical parametric oscillator (OPO) 44,

development

02 Integration of tunable burst-mode sources into high-speed CARS and LIF
instruments

M2.1 N2 CARS thermometry in lab-scale flame 4 •

M2.2 LIF imaging in lab-scale flame 4 •

M2.3 Assessment of collisional loss rates for quantitative LIF 4 •
M2.4 Risk mitigation option: diode-laser, spont. Raman, e-beam 41.

diagnostics

03 Diagnostic insertion into high-temperature shock-tunnel: coupling of models and
experiment

M3.1 SPARTA DSMC simulations for normal-shock experiment

design

4 •

M3.2 Canonical normal shock experiment 400

M3.3 Nonequilibrium distribution function: code-to-experiment

comparison
4 •

M3.4 NO production/consumption: code-to-experiment

comparison

M3.5 Capstone validation capability experiments

M3.6 SPARC simulations of Capstone experiments
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Sandia/U.Texas plasma torch collaboration (w/ P.Varghese)

(1) Task 1: Use existing high-TRL Sandia
experimental tools and UT-Austin
plasma-torch facility to provide ablation-
relevant high-temperature chemistry
data for short-term results at reasonable 

cost. 

(2) Task 2: take mid-TRL diagnostic methods
developed for Sandia "abnormal

thermal" environments and adapt them
for multi-species detection in

hypersonics with reduced uncertainty

UT-Austin plasma torch
facility provides high-
enthalpy, high-
temperature
environment for TPS
materials testing

Target measurements:
• Tr, Tv, species via ns-

CARS (10 Hz)
• LIF detection of NO,

atomic species
• Surface heat flux

and ablation
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Flexible High-Speed Optical Parametric Oscillator for Hypersonic
Reacting Flow Diagnostics (Purdue AA, Slipchenko P1)

Plus-up to Proposal 20-0545

Ring cavity OPO
823 nm

L1 cw seed
 i

PB Pump KTP

•

1503 nm 226 nm

i
532 nm %. . ,

4
BBO 266 nm
LJ

BBO

OPO design advances:
• Two times more efficient crystal
• Ring cavity simplifies seed coupling
• Better beam quality for mixing

Expected performance:
• Two times higher conversion efficiency
• 100 kHz operation

Mitigation of major proposal risks:
01: aid Sandia with....
• Laser dye energy handling

characterization
• Development of tunable narrowband ns

OPO
02:
• ps OPG/OPA output optimization
• Development of ns/ps quantitative NO

and 0 atom LIF
• Development MHz-rate point fs/ps Hybrid

rotational CARS
03:
• Support Sandia measurement campaigns

Available capabilities at Purdue:
US student
BM laser
Narrowband dye laser
Broadband dye laser



I Tunable Source Development

Burst-mode dye lasers  are largely
unproven technology
* Broadband dye lasers for CARS unproven
sz Recent tech demonstrations promising for
NO LIF at 20-30 kHz
,/ Commercial 10 kHz DPSS-pumped dye

Focused pump fluence schemes
• High-speed dye pumps
• Tight pump focus
• Longitudinal pumping

Burst-Mode
Pump Beam

I
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-ur
Amplifier Chain

Gain Medium
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Burst-Mode
Pump Beam

\ \

Tailored pump fluence schemes 
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1
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Output Beam .

AM

• mitigate dye saturation, heating, damage
• Staged pumping
• Multiple scalable amplifiers
• Bethune cells

Hybrid solid-state OPO/dye amplifier systems
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