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Thermochemical mechanisms are tuned for ballistic reentry
Mechanisms derived limited, “integral” experimental data
Supported by ab initio calculations with uncertain potentials
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Multiple parameters are inferred from single parameter data
Non-unique, vulnerable to effect of compensating errors

Hypersonic reacting flow modeling: present state-of-the-art
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Importance of nonequilibrium conditions

Chemical mechanisms are valid “near equilibrium”

Reaction rates are modified using thermodynamic
distributions which are frequently assumed

Vibrational excitation has significant impact on rates

Internal <€==p translational energy exchange affects
flow processes like transition to turbulence

Nonequilibrium conditions can be
significant in ground-test facilities

i Unknown test
Stagnation state oSt
at high T,P gas condition!

-

/ST~

Rapid hypersonic expansion

T

rot’

Shock Layer

Energy

T

trans

Increasing
reaction rates

eI,v



Sandia validation paradigm for hypersonic reacting flow m

Co-location and integration

* modeling

* high-enthalpy test facilities
« diagnostics

SPARC arc-jet
simulation

T: 200 980 1760 2540 3320 4100 4880 5660 644

High-speed diagnostic development
» Temperatures & distribution functions
* Quantitative reacting species data

High-enthalpy ground-test facilities Continuum and DSMC

modeling on large-scale
compute platforms

Shift hypersonic validation paradigm
* Reduce compensating errors
» Extrapolate models to real flight conditions

Detailed validation facility characterization
with quantifiable uncertainties
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Capability demonstration
« Canonical normal shock (SPARTA DSMC)
« ‘Capstone’ high-enthalpy experiment
(SPARC)
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Advanced diagnostic methods




Sandia’s Free-Piston High-Temperature Shock Tube (HST)

Commission Shock Estimated Operating
Design shock tunnel for hypersonic, reacting Firsineal Map
flight environments
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Coherent anti-Stokes Raman scattering (CARYS)

« Powerful laser spectroscopic tool

 Major species (N;, O,) PROBE VOLUME Point Measurements
« Temperature Focusing 7

* Nonequilbrium states (T,y, Tyip)
* Distribution functions

‘pro4

1-D Line Imaging




Coherent anti-Stokes Raman scattering (CARYS)

m)

* Powerful laser spectroscopic tool
« Major species (N,, O,)
« Temperature
* Nonequilbrium states (T,y, Tyip)
« Distribution functions
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1-D CARS imaging across a Mach-4 shock




Coherent anti-Stokes Raman scattering (CARYS)

m)

* Powerful laser spectroscopic tool
« Major species (N,, O,)
« Temperature
* Nonequilbrium states (T,y, Tyip)
« Distribution functions
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1-D CARS imaging across a Mach-4 shock




Coherent anti-Stokes Raman scattering (CARYS)

* Powerful laser spectroscopic tool €
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1-D CARS imaging across a Mach-4 shock

Bonnet et al., Ann. Rev. Fluid Mech. (1998)




CARS Measurements in a nonequilibrium plasma

Dedic, Meyer, and Michael, “Single-shot ultrafast coherent anti-Stokes Raman
scattering of vibrational/rotational nonequilibrium,” Optica 4, 563-569 (2017).

Simultaneous pure-rotational and
vibrational Raman spectra

Direct measurement of distribution
functions
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High-speed diagnostics Il: LIF
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High-speed diagnostics Il: LIF
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High-speed diagnostics Il: LIF
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High-speed diagnostics Il: LIF
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High-speed diagnostics Il: LIF

NO LIF Visualization in a Mach-
10 Boundary Layer
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High-speed diagnostics Il: LIF

NO LIF Visualization in a Mach-
10 Boundary Layer
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Tunable burst-mode laser development (i |
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application of chemically specific imaging
and spectroscopic tools




Our solution: Tunable burst-mode laser development

* Burst-mode lasers have allowed
experimentalists to access high-speeds
(10s to 100s of kHz)

< 10.2 ms <10.2 ms < 10.2 ms H

W‘ 8 seconds _ _ 8seconds ‘W

40 kHz [/ 40 kHz [/ 40 kHz
00 09
Burst Mode .0
: Nd:YAG Laser °
» While powerful, these systems are not

wavelength tunable—this prohibits

fixed wavelength! o

application of chemically specific imaging
and spectroscopic tools

Dye Laser Technology I

v' Liquid dye gain medium

v Excellent broadband performance (CARS)

v Flexible, tunable, simple to align and maintain

v" Two recent demonstrations for burst-mode LIF

8 More susceptible to optical damage

8 Dye saturation “bleaching” and thermal degradation

-]
. BM-pumped,
o000
oo tunable
Tunable
Frequency Laser SOUICEs
Conversion Radiation

I Optical Parametric Oscillator (OPO) I

v All solid-state design

v" Multiple demonstrations for burst-mode LIF
(NO, OH)

v Singe demonstration (ps) for burst-mode H'
CARS on H,

8 Difficult to maintain and align
8 Decreased flexibility



Tunable Sources: Risk Mitigation

Technical Risk

NO LIF

)

Multiple Risk-Mitigation Pathways

Picosecond Burst-Mode Pulses

Solid-State OPO Technology

Proven for NO, OH LIF
Demonstrated (ps) for
CARS

Not demonstrated for
atomic LIF

2-D and 1-D Imaging

* More effective for 2-photon
schemes (O-atom, CARS)
* Single demonstration for H,

CARS in flames
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ps O-atom,
1-D imaging
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at Reduced Rates

« High single-shot data yields
* Previous shock-tunnel LIF
« Single-shot or reduced

burst-rate pump

Shock Tunnel
NO PLIF
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Alternative Diagnostics

» Diode laser absorption
» Spontaneous Raman
scattering
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Photon Counts

Pulse-Burst Raman Spectra: Early Results at 5 kHz

« Raman spectra at data rates

» Goal is 10-20 kHz for free-piston facility at
high densities

* No tunable source required

» Spectra obtained at 5 kHz in near-adiabatic
H,/air flame

« Spontaneous Raman signals are orders of
magnitude less than CARS

- Signal scales directly with N,
21
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‘ This 3-year LDRD will demonstrate quantifiable validation capabilities

Target Canonical Experiments

1. Canonical normal-shock experiment (SPARTA/DSMC)
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2. ‘Capstone’ validation demonstration (SIERRA/SPARC)

Nonequilibrium Free-Stream

Reflected
Shock Diaphragm

. Nonequilibrium
High T/P Rapid Expansion
Stagnation State

Surface Heat Flux, Radiation
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Utilize Sandia SPARTA and SPARC
codes to guide experiment
design
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Project plan: Milestones and Objectives

Objectives (0) and Milestones (M)

FY20

FY22

o1 Development of flexible and tunable burst-mode sources

M1.1 | Frequency-narrow dye laser at 30-50 kHz (LIF)

M1.2 | Broadband dye laser (CARS) at 30-50 kHz (CARS)

M1.3 | Risk mitigation option: optical parametric oscillator (OPO)
development

—
0-'—0

02 Integration of tunable burst-mode sources into high-speed CARS and LIF

instruments

M2.1 | N2 CARS thermometry in lab-scale flame

M2.2 | LIF imaging in lab-scale flame

>

M2.3 [ Assessment of collisional loss rates for quantitative LIF

M2.4 | Risk mitigation option: diode-laser, spont. Raman, e-beam

Diaphragm

diagnostics

o3 Diagnostic insertion into high-temperature shock-tunnel: coupling of models and
experiment

M3.1 [ SPARTA DSMC simulations for normal-shock experiment $—|—.
design

M3.2 | Canonical normal shock experiment  ——

M3.3 [ Nonequilibrium distribution function: code-to-experiment 0—|—.
comparison

M3.4 [ NO production/consumption: code-to-experiment g
comparison

Stagnation State

M3.5 | Capstone validation capability experiments

M3.6 | SPARC simulations of Capstone experiments

Burst Mode
Nd:YAG Laser

o0 o0
| Tunable

Frequency Laser

Conversion Radiation I

' OH LIF in model scramjet

Cantu et al. AIAA2016-1763

Nonequmbnum Free-Stream

| |
NT(CARS)
F"\—'—NO O (LIF)

| |
!4—»!
1 2

distance ~ time

Surface Heat Flux, Rad|at|on
Distribution [B ¥ i

Nonequmbrlum
Rapid Expansion




Sandia/U. Texas plasma torch collaboration (w/ P.Varghese)

UT-Austin plasma torch
facility provides high-
enthalpy, high-
temperature
environment for TPS
materials testing

(1) Task 1: Use existing high-TRL Sandia
experimental tools and UT-Austin
plasma-torch facility to provide ablation-
relevant high-temperature chemistry
data for short-term results at reasonable

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
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Flexible High-Speed Optical Parametric Oscillator for Hypersonic
Reacting Flow Diagnostics (Purdue AA, Slipchenko Pl)
Plus-up to Proposal 20-0545
Ring cavity OPO
823 nm

Mitigation of major proposal risks:

O1: aid Sandia with....

» Laser dye energy handling
characterization

PB Pump d » Development of tunable narrowband ns

~ OPO

_______________ 02:

* ps OPG/OPA output optimization

» Development of ns/ps quantitative NO
and O atom LIF

: . « Development MHz-rate point fs/ps Hybrid
OPO design advances: rotational CARS

« Two times more efficient crystal 03:

* Ring cavity simplifies seed coupling - Support Sandia measurement campaigns

« Better beam quality for mixing
Expected performance:

« Two times higher conversion efficiency

* 100 kHz operation

———————————————

Available capabilities at Purdue:
US student

BM laser

Narrowband dye laser
Broadband dye laser



Tunable Source Development

Burst-mode dye lasers are largely sustMode  Jailored pump fluence schemes |

Pump Beam

unproven technology
8 Broadband dye lasers for CARS unproven
v Recent tech demonstrations promising for
NO LIF at 20-30 kHz
v" Commercial 10 kHz DPSS-pumped dye

| Output Beam

Focused pump fluence schemes FH“_’
R High-speed dye pumps — Oscillator \Gain Vodium Amplifier Chain
o Tight pump focus Dye or Solid-State Crystal
» Longitudinal pumping

..........

mitigate dye saturation, heating, damage
Staged pumping

Multiple scalable amplifiers

Bethune cells

Burst-Mode
Pump Beam

\D DO O
\) Focusing Len

| \
Amplifier Chain

Oscillator
\Gain. Medium |Hybrid solid-state OPO/dye amplifier systems

Dye or Solid-State Crystal




