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3 MoS2 is a Versatile Lubricant

*Dry lubricant

• Superlubric (p < 0.01) in dry environments

• Coaster brakes, CV joints, ski wax, bullets...

• Satellites, aircraft engines

• Self-lubricating composites with polymers

•Other uses:

• Catalysis (desulfurization, electrolysis of water)

• Memristor/memcapacitors

• Flexible circuits
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4 How Does itWork?

molybdenum disulphide
= 0.02 -0.06 (inert @IN)

4 = 0.15 -0.25 (humid air @ 1N)
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CSulfur • Molybdenum

(A) Depiction of the layered structure of Mo52 lamellae stacked upon one
another. (B) Hexagonal stack lattice structure of MoS2 with atomic spacing
and sequencing.

B

6.7 A

A

B

oriented surface layer
of 002 basal planes of MoS2

3-10 nm

—f-

Run-1n Processes

Fn

 Ft
transfer

Im

2)Shear-induced
crystallite re-orientation

sliding surface
4 

1)Transfer Film Formation

basal planes parallel
Fn to surface

randomly oriented
nanocrystalline Mo52

"11/1111/111--IL .0•....
Deposited film is made of many
small randomly oriented crystallites
of molybdenum disulphide.

•Hexagonal structure, form thin, weakly bound lamella

•Issues: run-in and oxidation



5 Environment (oxygen and water) affect friction
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6 Start with pure MoS2 -- Temperature Dependence
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*non-Arrhenius behavior
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•Singer (1990) showed contact is purely elastic

•12 = So/P + a

• S — 25 MPa at 300K

• Implies sheets sliding on sheets

•Use simulations to understand the shape

sh
ea

r 
st

re
ng

th
, S
 (
M
P
a
)
 

temperature, T (K)



7 Molecular Dynamics Simulations

rigid layer

mobile layer

nano-platelets

mobile layer

rigid layer

stoichiometric nanoplatelet

•Sandwich 64 nanoplatelets
• Mobile lamella on top & bottom

• Fixed lamella (rigid layer) to control load and speed

•ReaxFF: Vasenkov, et al., J. Appl. Phys. 2012
• Slow technique with (reasonably) accurate chemistry
• Lots of simulations => small & fast.

top layer, 1 km/s
matiominfammismam)
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14 nm

12 nm
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8 Fundamental Behavior: Shear Strength
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°All shear strengths collapse!

°What causes this shape?
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9 Elastic contact => Energy Barriers: Previous work
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10 Elastic contact => Energy Barriers: Our work
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Barriers converge with increasing flake size; make a toy model
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Probabilitv & Failure to cross barrier:

(
pn exp

kT

fn =1— 13,

Total sliding probability & friction:

P slide = PrPi frP c

f slide 1 P slide 1 (PrPi+ f rP c



12 Results of toy model

80

fslide = C0 1— exp
E

kT

Fit to MD

o

experiments
• simulations

Dunckle et al., 2011
  full model prediction
— simple model prediction —
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Curry, et al., ACS Applied Nano Materials (2018)



13 Friction in Environments
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0
Vacuum 02 Atomic O H20

•Changes with added oxygen or water match experimental results quite well (for MD...)



14 Is there chemistry?

600 -

.
2 400 -o_o,,

200 -

o

1 000

V)
-0
c
o
ID

500

o

molecular oxygen

Mo-O 02
-F

water

Oxygen

600 -

co 400 --0c
0
_o
*

200 -

0

H-H water H-O water waters Mo-O 02 H2

*Water does not dissociate (no 02 or H2 formed)

•Molecular 0 shows little dissociation (mostly in 02)

*Atomic oxygen forms little 02

*Not much...

atomic oxygen

Mo-O 02 Oxygen



15 Charge on Oxygens confirms chemistry

H20
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Water
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Oxygen charge

Atomic Oxygen

-0.5

Oxygen Charge

-1.0 -0.5

Oxygen Charge

0

0(1)

Tokarz-Sobieraj et al.
Surf. Sci. 2001

502

z 02 •Oxygen bonded to Mo has partial charge from

aAl
AZ -0.48 (Tokarz-Sobieraj et al. Surf. Sci. 2001) to

& 
-0.33 (Yin et al., J. Mol. Model 2001).

o •Oxygen in water has partial charge from -0.6
to -0.8(Astrand, et al., J. Phys. Chem. A 1998).

•Water shows only physisorption

•Atomic oxygen shows chemisorption

•Molecular oxygen shows slight amount of
chemisorption

o



16 What happens to the energy barriers?
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17 Run-in and re-run-in

- Recipe for success: run film in to steady state... and watch friction increase upon return
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18 Pressure Matters too!
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19 Environmental factors change shear strength

Adsorption

  1  

- Simple theory: adsorption and diffusion

- Not a new idea:
• Johnston & Moore 1964

• Pritchard & Midgeley, 1969

• Colbert, Ph.D. thesis 2012
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20 Simple Coverage Model

- simple fractional coverage model

- coverage 0 depends on available sites

-two variables:

o k= rate of arrival

• s = sticking coefficient

o k= kl+k2, s= sl+s2

dO

dt 
= k • s(1— 0)
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0 1— e-k.s.t
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21 Summary

•MoS2 shows purely elastic contact

•Shear is predominantly due to inter-lamellar interactions

•Simple model predicts temperature dependence

•No chemistry with water, little with molecular O, lots with atomic O

•Environment hinders formation of large sheets

•Run-in and re-run-in strongly affected by water

• Adsorption from vapor (at high and low pressures)

• Diffusion from bulk (low pressure only)

• Baking out helps!

■



22 Non-Amontonian Behavior

Singer, et al., Appl. Phys. Lett. 1990
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*Singer's explanation:

*it/ = S/P

• Expand S = So + aP

• itt So/P + oc

• itt = Son- (3R/4E)2/3L-1/3 + a

• So = 25 MPa

•Contact is purely elastic => sheets
sliding over sheets



23 Molecular Dynamics Simulations
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•Start with nanoplatelets

•Defect free platelets are non-stoichiometric
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24 Molecular Dynamics Simulations

200 300 400

I IF= ) ON)

• T 75K
mu =0).114,

A T=150
l '011111

• T=225
mu = 01090

• T me
mu =01082,

•Six loads at each temperature

°it = dF f / dF gives friction coefficient

°Contact conditions => A = [3_F, can use to calculate shear stress

•



25 I Priction vs.Temperature
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26 Commensurate vs. Incommensurate Sliding
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27 What happens with oxygen and water?

0.15

G.)
ig 0.10

o

0.05

LL

02 Atomic O H20 defective

°Friction goes down?

•This is unfair...

• Water and oxygen passivate defect sites

• Need to do this in the pure system, too

• Look at non-stoichiometric (i.e. defect-free) nanoplatelets

•



28 Friction in Environments
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•Changes with added oxygen or water match experimental results



29 Effects of Oxygen on Inter-platelet bonding
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oxygen passivated defect free
•Oxygen bonds to defect sites & prevents formation of larger sheets

•Molecular oxygen looks very similar



30 Effects of water on Inter-platelet bonding

water passivated defect free

•Water also bonds to defect sites & prevents formation of larger sheets

•Water aggregates with itself more than oxygen does



31 Counts of inter-platelet bonds confirm
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AO 02 H20 defects defect free

Environmental species interrupt formation of larger flakes



32 Summary

•MoS2 shows purely elastic contact

•Shear is predominantly due to inter-lamellar interactions

•MD calculates correct shear strengths as a function of temperature

•Developed simple model based on probabilities:

• Energy barriers determine the shear strength

• Rotate, and slide incommensurately

• Fail to rotate and slide commensurately

•Incommensurate sliding is the most important — can neglect commensurate

•Simple model predicts temperature dependence



33 What about chemistry?

e

•Take systems that have "run-in" (i.e. reached steady-state shearing)

•Remove top layers

•Apply 02, AO or H20 at 100 atm

•Replace top layers

•



34 I LEIS experiments
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MD accurately represents oxygen depth profiles as seen in LEIS experiments
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