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Abstract

Efficient, effective use of sensors has long been a challenge for intelligence, surveillance, and reconnais-
sance (ISR) missions. While important even for traditional ISR missions, this challenge is foundational to
autonomous ISR missions, in which the sensor tasking and scheduling functions traditionally performed by a
human operator or analyst must be automated. To date, most consideration of sensor scheduling automation
has been in the context of single-platform systems. However, the challenge of sensor-scheduling automation
is even more marked, and its solution even more critical, for autonomous multi-platform systems. Effective
ISR in autonomous multi-platform systems requires careful spatial and temporal coordination of sensor use
across platforms, usually in the presence of stringent communication limitations. We present a novel tech-
nique enabling effective sensor tasking and scheduling for autonomous multi-platform ISR systems. This
technique is applicable in a wide variety of operational contexts and for a diverse set of ISR missions. It
formalizes multi-platform sensor scheduling as optimization of a utility function derived from a mission-
specific measure of performance, whose calculation is feasible using a combination of sensor-specific state
and ISR state shared between platforms. We employ auction methods and mixed-integer linear program-
ming (MILP) to provide rigorous optimization of sensor use to realize maximum mission benefit, even in a
dynamic battlespace and fluid operational environment characterized by the arrival and departure of sensing
platforms. Our approach does not require the communication of high-bandwidth data streams or any other
detailed platform or sensor information, but only compact, low-bandwidth information related to sensing
utility, task assignments, and ISR state updates. Our approach is scalable with the number of platforms
and sensors supporting the mission and with the number of targets or extent of the region being surveilled.
We provide details of the design and implementation of our autonomous multi-platform sensor scheduling
approach, including its application to specific ISR missions of interest, and show its implementation in a
modeling, simulation, and visualization environment.
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Figure 1: Sense-think-act paradigm for autonomous systems.

1 Introduction

Effective prosecution of intelligence, surveillance, and reconnaissance (ISR) missions requires judicious and
productive use of the sensors available to support the mission. Increasing deployment of sensors and sensing
platforms has greatly expanded ISR opportunities and applications, but the demand for these sensors and
platforms has largely kept pace with the supply. As a result, the careful planning of sensor use is as critical
now as it has ever been. Robust, reliable sensor tasking and scheduling is thus a key—and increasing—need
across the spectrum of ISR applications.

While important even for traditional human-directed ISR applications, the need for effective sensor tasking
and scheduling is absolutely foundational to ISR missions performed by autonomous systems. Autonomous
systems seek to achieve some high-level goal without continuous human direction, replacing the traditional
human in the loop with a human on the loop. As depicted in Figure 1, autonomous systems are characterized
by a sense-think-act paradigm: sensors are used to transduce some physical phenomenon into a data stream
(“sense”) that is subjected to exploitation to extract relevant information (“think”), which provides the basis
for a decision to actuate some physical change (“act”). The process depicted in Figure 1 repeats in a closed-
loop fashion to drive the system toward a desired end state, with sensors and their products critical to every
step. In the context of autonomous ISR, judicious sensor use is essential to ensure that sensor data is obtained
on all relevant targets or regions, and that the collected data provides timely information that evolves with the
engagement to support mission decisions that will yield a desired outcome. Because sensors are scarce and
the data they provide is critical, sensor tasking has almost always been a human-directed mission function.
However, in an autonomous ISR system, all sensor tasking and scheduling must be automated. Effective
optimization of sensor tasking and scheduling is a key challenge that dictates the success or failure of
autonomous ISR systems and missions.

Effective and efficient sensor use is key for any autonomous ISR system. However, it is especially critical
in autonomous multi-platform systems, in which distinct sensing platforms collaborate autonomously in
support of some ISR mission. Successful prosecution of ISR missions by such systems requires not just
the careful management of single-point sensor resources that is required for single-platform, single-sensor
missions, but also the careful spatial and temporal coordination of sensor usage across a distributed system
to enable collaborative ISR. This must be done in the presence of often stringent communication limitations,
in which any platform or sensor will generally have only limited knowledge of the state and capabilities of
any other platform or sensor, and potentially no access to the data streams collected by other platforms and
sensors. It must be done in a manner that accommodates potentially diverse capabilities and operational
requirements among the collection of platforms. Unfortunately, existing and emerging sensor tasking and
scheduling techniques—even those designed for use on autonomous single-platform systems—are largely
inadequate for use by autonomous multi-platform systems.
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We have developed an approach enabling effective, efficient use of sensors across a distributed collection
of platforms to achieve autonomous multi-platform ISR. Our approach does not depend on the exchange
of high-bandwidth sensor data streams or detailed platform or sensor state information or capabilities, but
only on the exchange of compact and low-bandwidth information related to sensing-task mission benefit and
ISR state information. It is thus applicable even in highly communication-constrained environments. Our
approach supports systems comprised of either homogeneous or heterogeneous collections of platforms and
sensors, and it is applicable to a wide variety of specific ISR missions. It directs sensor usage adaptively to
optimize of mission benefit, even in a dynamic battlespace and in a fluid operational environment in which
individual platforms and sensors may be joining or departing the collaborative mission. Our approach can
be used to obtain both immediate sensor tasking assignments and longer-term sensor schedules that involve
a sequence of tasks stretching into the future.

The rest of this paper is organized as follows. Section 2 describes the underlying formulation, key concepts,
and the basic structure of our approach that is applicable to a wide variety of ISR missions. Section 3
provides details of the approach related to the quantification of mission benefit and the definition of relevant
state for specific ISR missions of interest. Section 4 describes the optimization of mission benefit given
the mission-benefit quantification of the previous section. Section 5 presents an implementation of the our
approach in a modeling, simulation, and visualization environment.

2 Formulation

Consider a multi-platform collaborative ISR mission involving M sensors, each of which may concurrently
perform one of N discrete sensing tasks related to the mission goal.! (In general, M and N may both vary
over the course of the mission.) We seek to assign sensors to tasks over a discrete timeline consisting of
L successive intervals. We define a set S of LMN task-assignment indicator variables s;,, ,, each taking
value 1 if sensor m is assigned to perform task » during timestep /, and value O otherwise. We allow that
the selection of S may be constrained by a number of mission-, platform-, sensor-, and task-specific factors.
Any choice of S—that is, of the full set of LMN task-assignment indicator variables s; ,, ,—that meets these
constraints represents a feasible sensor schedule for the multi-platform system at hand.

We formalize multi-platform sensor scheduling as an optimization problem, in which a feasible S is to be
selected to maximize some mission-specific measure of performance P that provides a numerical represen-
tation of mission efficacy. In general, P is highly mission-dependent: it depends on the specific goal of the
ISR mission at hand.? Regardless of the details of the mission at hand, however, P measures how effec-
tively we have measured what we will term the ISR state, or the properties of the external world that are
important to our stated ISR goal. We assume that at any point in the mission, P may be calculated from our
representation of the ISR state and its associated uncertainty. Given the current ISR state and its associated
uncertainty, the future evolution of P is stochastic: it will depend on the evolution of the ISR state, on the
evolution of the sensing-system state, and on the choices we make about sensor tasking (that is, on S). Our
objective function for the sensor-scheduling optimization problem is the expected future value of P given a
sensor schedule S and given the current ISR state Xjsr and sensing-system state X, or

E(P|S,XisRr, Xss)- (1)

IFor missions involving ISR of distinct targets, N naturally corresponds to the number of targets. For missions involving ISR of
a continuous region, N might correspond to a number of discretized subregions.
2We will investigate specific measures of performance P for different ISR missions of interest in Section 3.
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(Note that while the current value of P will generally only depend on Xjsg and not X, the expectation of its
future value will generally depend on both terms.) The expectation of (1) might be taken for any future time,
but we will typically be interested in its value at the conclusion of all sensing tasks indicated by schedule S.

Obviously, maximization of the objective function of (1) depends strongly on the definition of performance
P. This is a measure of performance that will typically be specific to a particular mission. However, regard-
less of the choice of P, we will leverage the concept of utility to characterize its dependence on sensor-task
assignments and to facilitate the optimization. We define utility to be the expected mission benefit of allo-
cating a particular sensor to a particular task at a particular time, defined in terms of the mission-specific
measure of performance. Let S5, be a candidate schedule consisting solely of a single sensor-task assign-
ment: the allocation of sensor m to task n at timestep /. (Thus, each of the LMN task-assignment indicator
variables in Sg, has value 0 except for the single variable corresponding to sensor m, task n, and timestep /,
which has value 1.) Let Sp be a “null schedule” in which no sensors are assigned to any tasks at any time—
that is, in which all LMN task-assignment indicator variables have value 0. Then the utility of allocating
sensor m to task n at timestep [ is taken to be’

umn = E(P|Ss,,, ., Xisr, Xss) — E(P|So, Xisr, Xss)- 2

Thus, the utility of the single sensing task indicated by S, = is simply the expected marginal benefit to
mission performance if the given sensor performs the given task at the given time. Because we assume that
any sensing tasks is performed independently by an individual sensor, the expected mission benefit of a task
assigned to a particular sensor does not depend on the state of any other sensor. Denoting X, to indicate the
portion of X that pertains to the state of sensor m, this means that

U mn = E(P|Ss,,, ., X1sr, Xm) — E(P|So, XisR ). (3)

Given this representation, optimization of mission benefit follows directly: we seek a schedule S for which
the total utility, calculated as the sum of individual task-assignment utilities as in (3), is maximized.

Note that in the general formulation constructed thus far, the precise mathematical forms of P and u, as
well as the precise components of Xisr and X, remain unspecified. These will typically depend strongly
on the mission and system at hand. However, the construction of (3) immediately spurs two important
observations. First, given appropriate state information and a mathematical specification of how P depends
on that state, any sensor can, in theory, apply (3) to calculate the benefit of each of the LN tasks it might
perform. Second, any sensor can calculate these values solely from the ISR state and its own sensor state,
without regard to the state of any other sensor. This means that no sensor-specific information need be
transmitted between platforms, and leads to a natural conception of all state information being partitioned
into a public component (Xisr) and M distinct sensor-specific private components (X,,).

The encapsulation of mission benefit in utility and the partitioning of state into private and public compo-
nents have important implications that directly suggest our approach to multi-platform sensor scheduling.
In particular, they imply that the computation required to optimize mission benefit over sensor schedule
can happen in a largely distributed fashion, and with very limited information exchange between platforms.
Public state must be communicated between platforms to enable the utility calculation of (3), but no private
state must be exchanged. Utilities must be communicated between platforms to enable the maximization of
total mission benefit across sensor schedules, but no other information must be exchanged. Additionally,
assuming that each platform has sufficient computational resources to exploit its own collected data streams,

3Note that P has been defined such that a larger value indicates better performance. If the opposite polarity holds, then the
derivation the follows can be changed in obvious, trivial ways—namely, by changing signs or changing the optimization objective
from maximization to minimization.
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no sensor data must be transmitted off-board any platform—instead, only compact sensor-exploitation in-
formation needed to update public state must be communicated. Multi-platform sensor scheduling is thus
possible in a largely distributed fashion with limited communication between platforms, and simply requires
a framework to broker the required information exchanges.

Fortunately, there is an existing family of straightforward techniques that provide the framework needed
here: auction methods. Auction methods involve the structured exchange of information between multiple
agents through bidding to arrive at some globally most-desirable result [8]. As their name implies, auction
methods are derived from the well-known practice of property sales to competing agents through monetary
bids. However, auction methods have been successfully applied to problems in a number of domains that,
at first glance, have little obvious connection to property transfer—and in which, like ours, the agents are
not competitive but collaborative. One such example is multi-robot task allocation [6], in which a team of
robots collaborate in order to achieve some desired goal. This problem is similar to ours, in that multiple
agents must perform discrete tasks in order to achieve some more-encompassing result, and in which the
quality of the overall result depends on the underlying assignment of tasks to agents.

Figure 2 provides a step-by-step description of our application of auction methods to multi-platform sen-
sor scheduling. It is immediately seen to be relatively straightforward, with each agent responsible for a
well-defined set of tasks, and with the flow of information between agents clearly delineated. One agent
takes the role of the auctioneer, and all other agents take the role of bidders. (The auctioneer may also be a
bidder.) The auctioneer is responsible for the maintenance of all public state information and for optimizing
over reported utilities to determine a sensing schedule. The bidders are responsible for maintaining their
own private state, and for using this private state in conjunction with the auctioneer-provided public state to
calculate sensing-task utilities. Auctions are performed repeatedly, each yielding a schedule specifying the
assignment of tasks to sensors over the next L timesteps. If operational requirements dictate, this schedule
may be implemented as-is, tying each sensor to a fixed sequence of tasks over the next L timesteps. Al-
ternatively, if long-horizon advance scheduling is not required, then each sensor may be assigned only the
single task indicated in the current timestep, and then another L-interval auction may be performed in the
next timestep. Note that in this latter case, repeated auctions provide for continual re-optimization as the
ISR and sensor state evolves. Furthermore, optimization over L timesteps is desirable even if sensors are
to be tasked only for a single timestep, simply because it avoids potentially short-sighted, greedy taskings
that will prove suboptimal as an engagement evolves.* Figure 3 provides an information and processing
flow diagram for the auction approach, structured to indicate how each step in the process conforms to the
sense-think-act paradigm for autonomous systems depicted in Figure 1.

Note that while Figure 2 provides a high-level step-by-step description of our auction methodology, it lacks
many details that are essential to the actual implementation of this process for any particular mission. For
instance, Step 3 is silent regarding the actual definition of utility for a particular mission (as well as the
private and public state required to calculate utility), and Step 5 does not provide any details on how utility
optimization may actually be performed to yield an optimal set of task assignments. Furthermore, the
definition of public and private state used throughout Figure 2 is also as-yet unspecified. We examine the
topics of utility and state in Section 3, and the topic of optimization in Section 4.

4This is analogous to model predictive control [4], in which an optimal long-term control policy is obtained and partially
implemented, but in which periodic re-optimization yields new long-term control policies that supplant each previous policy.
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10.

Role assignment. One sensing platform is designated as the auctioneer; the others
are designated as bidders. (The auctioneer may also serve as a bidder.)

. Public state dissemination. The auctioneer transmits the latest public state informa-

tion to all bidders.

. Auction call. The auctioneer announces an auction, requesting that each bidder pro-

vide their utility for each of the N sensing tasks at each of the L schedule intervals.
Utility calculation. Each bidder uses the public state (received from the auctioneer in
Step 1) and its own private state to calculate the feasibility and utility of performing
each of the N potential sensing tasks at each of the L schedule intervals.

. Bid transmission. Each bidder transmits its calculated utilities to the auctioneer as

a set of LN bids. (If any of the slated tasks is deemed infeasible by any bidder, it
simply withholds a bid on that task.)

Optimization. The auctioneer processes the full set of LMN bids to determine a set
of task assignments to provide the maximum utility over the scheduling timeline.

. Assignment notification. The auctioneer notifies the winning bidders of their sens-

ing task assignments over the scheduling timeline.

Task execution. The winning bidders execute their assigned sensing tasks for the
current timestep. Each bidder processes its data stream to yield information relevant
to the public state.

. Information transmission. Each bidder transmits the information extracted from its

current-timestep sensing task in Step 7 to the auctioneer.

. Public state update. The auctioneer incorporates all information from all bidders to

update the public state.
Time progression. The timestep increments, and the process returns to Step 1.

Figure 2: Auction approach to multi-platform sensor scheduling.
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Figure 3: Information and processing flow diagram for auction approach.
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3 Utility and State

Utility was defined in Section 2 as the expected marginal mission benefit of performing a particular sensing
task by a particular sensor at a particular time, in the absence of any other task assignments. This led to
the mathematical representation of (3), in which utility depends on a measure of performance P, given the
candidate task, a public ISR state Xsgr, and a private sensor state X,,. The mission at hand dictates the
particular form of the measure of performance, the public and private states, and utility. This provides a
flexibility that is one of the key strengths of the auction approach. It is suitable for application to a variety
of missions.

In this section we examine the application of utility and public and private state information to two particular
ISR missions of interest: multi-target tracking and multi-target identification. We present a manifestly
reasonable measure of performance for each, and show how a precise definition of utility and a natural
definition of public and private state flows from the presented performance measure. We examine the multi-
target tracking mission in Section 3.1 and the multi-target identification mission in Section 3.2. In each case,
we assume for convenience that the initial presence of any target of interest is provided as an external cue to
our sensing system, so that our mission involves only sensing individual known targets, and not performing
any wide-area search functions.’ Modification of what follows to incorporate wide-area search tasks into
schedule selection would be relatively straightforward.

3.1 Mission 1: Multi-Target Tracking

Many ISR missions involve tracking moving objects. Tracking typically involves repeated re-estimation of
the locations and velocities of targets of interest as new sensor measurements of those targets are provided.
Tracker estimates are imperfect: they depend on not only the stochastic nature of the targets themselves,
but also on the characteristics of the sensors and measurements that are used to maintain the tracks. The
uncertainty inherent in tracker location estimates is typically quantified in terms of an error covariance. If
the tracker provides an estimate X, of the location x,, of the nth target it is tracking, then the error covariance
is defined as

A =E (& —%,) (R0 —x,)"). 4)

The error covariance is often envisioned as an “error ellipse,” or an ellipsoidal region centered on X, whose
extent and orientation are determined by the eigenvalues and eigenvectors of A,. Because the goal of a
tracking mission is typically to determine the location of objects of interest with the best possible accuracy,
a natural measure of performance is provided by the total area of the error ellipses of all tracks. In terms of
A,,, this measure of performance is simply

N
P=-Y |A|'", (5)

n=1

where | o | indicates the determinant operator. Note that the leading negative sign in (5) ensures that larger P
indicates better performance, as indicated in Section 2.

Given the measure of performance in (5), we can apply (3) to specify the utility of any candidate sensing
task. That is, we can calculate utility by computing the expected change in P imparted by assigning a sensor
to a target at a particular time. In general, assignment of a sensor to a particular target n will, with some

5In the context of the multi-target tracking mission, wide-area search is needed for track initiation. In the context of multi-target
identification, wide-area search is needed for target detection.
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probability, yield a location measurement that can be incorporated into the target track to reduce the single
covariance matrix A,.° The extraction of a target measurement and the estimation of target location from
an extracted measurement are both stochastic processes, and they depend on various sensor and external
characteristics. Let us denote the probability of successful extraction of a target measurement (that is, the
probability of detection) by pg, and let the covariance of the target location estimated from the extracted
measurement by R.” The incorporation of a new location measurement into a target track is highly tracker-
dependent. In practice, many trackers are Kalman filters [5]. Kalman-filter trackers incorporate new location
measurements into existing tracks according to a weighting determined from A,, and R to provide an updated
track location estimate with reduced covariance of

Ar—A,(R+A,) A, (6)
Application of (5) and (6) to (3) can be shown [13] to give a utility definition that is simply

|An|

_ 7

U= pd
Here, the ratio of determinants captures the reduction in the area of the nth error ellipse if the sensing task
yields a new measurement of the location of target n, and the leading pq term captures the probability that a
new measurement will be successfully extracted if the sensing task is performed. Both of these terms follow
from the probabilistic nature of the exploitation of the data produced by the assigned sensing task. As a
whole, (7) provides an unambiguous, compact, and easily computable utility for any candidate sensing task
in a mult-target tracking mission.

The utility definition of (7) depends on three quantities: a track error covariance A,, a sensor measurement
covariance R, and a sensor probability of detection pq. The A, term is independent of the sensor, and in
fact, must be available to all sensors to compute their utilities. This term thus clearly belongs to the public
state Xysr, along with the actual track location estimates X, themselves. In contrast, R and p4q each depend
strongly on characteristics and capabilities of the sensor at hand. For instance, R and pg will usually depend
on the sensor location and orientation with respect to the target, as well as on various other factors. Whatever
intrinsic factors an individual sensor m requires to represent its own R and py4 for a candidate sensing task
thus belong to its individual private state X,,. All of this intrinsic information resides solely on the sensor
itself, and need never be communicated to any other sensor. As per the framework of Figure 2, each sensor
need only ever transmit the utilities it calculates as in (7) and the target-location measurements it extracts
from the data it collects. In return, each sensor need only receive target location and covariance updates and
sensing task assignments.

3.2 Mission 2: Multi-Target Identification

Many ISR missions use sensors to perform automatic target recognition (ATR)—that is, to identify targets by
type or class. Because sensing and exploitation are inherently imperfect and stochastic, unambiguous target
identification is not possible. Effective ATR thus involves not merely declaration of target type or class, but
also assessment of the probability of target identity from among a set of hypotheses. Target identification

6Closely spaced targets or wide-field-of-view sensors may result in a single task assignment producing location measurements
for multiple targets that, in turn, affect multiple covariance matrices. If needed, this possibility can be built into our formulation,
but for the sake of simplicity it is not done here.

TIn what follows, we assume that the coordinate frame used for extracted-measurement location estimates is the same as the
coordinate frame used for track locations. Accommodation of different coordinate frames is straightforward but complicates the
subsequent exposition by requiring introduction of additional terms needed for frame conversions.
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is often posed as the assessment of target identity from among a set of K mutually exclusive, collectively
exhaustive hypotheses.® In this context, the goal of an ATR system is to report, for each target of interest 7,
a vector of proababilities

Pn = [pll717"'7pn7K]7 (8)
where each p, ; represents the probability that target n has an identity of type k, with

0< pui<1 ©9)
and
K
Y pui=1. (10)
k=1

In general, p, evolves through the course of an engagement, as additional measurements of the target are
obtained by one or more sensors. Each successive sensor measurement i of target n is subjected to exploita-

tion to yield a single-look probabilisitic assessment ﬂ:,(f). This must be fused with the previous probabilistic

(i-1)

assessment p, ~ that incorporates information from the first i — 1 sensor measurements to yield an up-

dated probabilistic assessment p,(f) that incorporates information from all i measurements. This is usually

performed according to an iterative update rule
pi’ = f(pi ), (1n

where the iteration is initialized with a prior 71:,(10). If successive sensor looks provide new information, if the
ATR algorithms are effective in extracting that information, and if the update rule f(e) in (11) is robust and
realistic, then p,(f) should evolve to reflect progressively more certainty about the identity of the target as an
engagement proceeds.

Given that the goal of a multi-target identification mission is to determine the identities of targets with the
greatest possible certainty, a natural measure of performance for such a mission is provided by entropy [3].
The entropy of a discrete probability distribution is defined as

K

H(p) =— Y prlog, pr, (12)
k=1

where pylog, py is taken to be zero for zero-valued py. Entropy as defined in (12) is measured in bits, and
it indicates the uncertainty inherent in a sample drawn from the distribution in question. A reduction in
entropy corresponds to a reduction in uncertainty. The entropy of a K-element probabilistic assessment p is
bounded below by zero (achieved when one py is unity-valued and the rest are zero-valued) and is bounded
above by log, K (achieved when p is uniform). We will take the measure of performance for a multi-target
identification mission to be

N
P=—Y H(py), (13)
n=1

or the negative of the total entropy in the probabilistic assessments of all targets. Note that the leading
negative sign in (13) ensures that a greater P indicates better performance, as assumed in Section 2.

8Typically, K — 1 of these hypotheses correspond to specific target types or classes of interest (thus satisfying the mutual-
exclusion requirement) and the Kth hypothesis corresponds to “none of the above” (thus satisfying the collective-exhaustion re-
quirement).
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Given the measure of performance of (13), the utility of any sensing task is given by application of (3). In
general, assignment of a sensor to a single target will have the potential to impact only that target’s prob-
abilistic assessment”, subject to the successful extraction of the target from the collected data. The impact
on entropy will depend on the quality of the probabilistic assessment and on the form of the update rule
f(e) of (11). Given a straighforward model [11] for the quality and distribution of single-look probabilistic
assessments that is characterized by a probability of correct identification pig and a set of K representative
single-look probabilistic assessments & corresponding to each identity hypothesis, this utility can be shown

[12] to be
K

u= Z PidPnk +
k=1

1 — pia
K—1

(1 _pn,k) (H(pn) _H(f(pnvﬁk))) : (14)

The utility of (14) is simply the expected reduction in entropy if sensor m is tasked to obtain another mea-
surement of target n.

While not quite as spare or elegant as the multi-target tracking utility of (7), the multi-target identification
utility of (14) is also a straightforward function of a relatively small number of terms that depend on the ISR
state and the sensor state: namely, the probalistic assessment p,, a set of nominal sensor-specific single-
measurement probabilistic assessments 7y, and a sensor-specific probability of correct identification pjg.
The p, term is independent of the sensor, and in fact, must be available to all sensors to compute their
utilities. This term thus clearly belongs to the public state Xjsr. In contrast, Ty and piq each depend strongly
on characteristics and capabilities of the sensor at hand. Whatever intrinsic factors an individual sensor m
requires to model its own & and pjq for a candidate sensing task thus belong to its individual private state
X,». As before, all of this intrinsic, sensor-specific information resides solely on the sensor itself, and need
never be communicated to any other sensor. As per the framework of Figure 2, each sensor need only ever
transmit the utilities calculated according to (14) and the probabilistic assessments &, it extracts from the
data it collects. In return, each sensor need only ever receive updates of the overall probabilistic assessments
T, and sensing task assignments.

3.3 Other Missions

The previous two sections detail the derivation of utility functions and the definition of public and private
state for two particular ISR missions of interest. In each case, the mathematical specification of utility flows
directly from a mission-specific measure of performance as in (3), and leads directly to a natural partition
of state information into private and public components. This partition is evident even without a complete
enumeration of every state component: it is imposed by consideration of which terms in the utility function
depend on information that must be available to all sensors, and which terms depend on information that is
specific to an individual sensor.

The framework we have described extends directly to missions other than the two considered here. This
is because mathematical representation of the utility for any mission proceeds directly from the mission-
specific measure of performance, from the characteristics of the measurements that are obtained by indi-
vidual sensing tasks, and from the way these measurements are used to update the representation of the
external world. As long as it is possible to define a mission-relevant measure of performance and a reason-
able model for the extraction and incorporation of new sensor measurements, it will be possible to derive a

9 As in the multi-target tracking mission, closely spaced targets or wide-field-of-view sensors may result in a single task assign-
ment providing data on multiple targets. As with that mission, it is possible to accommodate this possibility, but for the sake of
simplicity, such accommodation is not done here.
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mission-specific utility function and to partition state into public and private components. For instance, con-
sideration of coverage or wide-area search missions, in which the goal is to surveil a continuous region of
interest through repeated sensing tasks, leads to straightforward utility functions and state compositions for
such missions [9]. Consideration of persistent surveillance missions, in which individual targets or regions
must be kept under continuous sensor watch, leads to other utility functions and state compositions specific
to those missions. The multi-target tracking and multi-target identification missions examined here provide
two important, but by no means exhaustive, examples of the applicability of our general approach.

4 Optimization

Utility provides a quantification of the expected mission benefit for a particular sensing task. It provides a
means for different potential sensing tasks, and different collections of sensing tasks, to be directly com-
pared. As described in Section 2 and indicated in Figure 2, schedule selection involves optimization over
the full set of utilities for all possible sensing tasks, which are provided as auction bids. In this formulation,
M sensors each provide bids on N tasks over each of L distinct timesteps (possibly withholding bids on
any tasks they deem infeasible). Schedule selection thus consists of selecting some subset of LM N possible
sensing tasks that meet various logical or operational constraints on sensor usage. Depending on L, M, N,
and the constraints involved, this may be difficult: in fact, in the absence the general case, it is a combina-
torially hard problem. Fortunately, it is possible to formulate the required optimization as a mixed integer
linear programming (MILP) problem [2]. MILP optimization is a mature field that has been the subject
of extensive research and development for decades. It has yielded a variety of robust, efficient solution
algorithms that are available in commercial and open-source software packages. As such, formulation of
schedule selection as a MILP program has numerous theoretical and practical benefits.

MILP optimization, like linear programming optimization [1], involves the maximization or minimization
of a linear function of a collection of variables subject to linear inequality constraints on those variables.
Unlike linear programming, MILP requires that the variables subject to optimization take on only integer
values. The generic form of a MILP problem is

max c¢'x
st. Ax<b, (15)
x € 7K.

Formulation of sensor scheduling as a MILP problem thus requires possible sensor taskings to be specified in
terms of an appropriate integer-valued vector x, the impact of different sensor taskings on a desired outcome
to be described in terms of ¢, and relevant tasking constraints to be indicated in terms of A and b.

It is straightforward to encapsulate potential sensor taskings in a discrete-valued vector. In fact, the indicator
variables s; , , introduced in Section 2 provide exactly the needed specification. We can collect the full set
of LMN scalar indicator values into a single vector:

!/
s=1[ s Sz o SLIN S120 t SIMN S200 tt SLMWN | (16)

As indicated in (3), each of the LMN potential sensing tasks corresponds to a particular utility that can be
calculated by the sensor at hand. We can collect the full set of LMN such utilities into a single vector whose
elements parallel those of (16):

!/
u=[ w1 wip o wigN Wipn o WiMN Uit ULMN | (17)
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Choice of any sensor schedule amounts to selection of a particular s in which some elements are 1 and some
elements are 0. The total utility realized by this s is the sum of the utilities in u that correspond to the
unity-valued elements of s. This sum is simply the inner product u’s. Hence, if we can encapsulate relevant
constraints on sensor usage in terms of a matrix-product inequality on s, then sensor scheduling becomes a
MILP problem of the form

max u’s
st. As<b, (18)
s e {01}V,

Note that the requirement that the elements of s be integer-valued in the canonical MILP form of (15) is
modified to a requirement in (18) that they be binary. This requirement could easily be enforced in (18)
through the construction of specific rows in A and b. The form of (18) is a special case of the general MILP
problem that is known as a (0, 1)-programming problem [2], and we use it here for the sake of conciseness
and clarity.

Encapsulation of relevant sensor tasking constraints in A and b amounts to specifying linear inequalities
on the collection of s; ,, ,, each of which equates to a single row of A and a corresponding element of b.
Some sensor-scheduling constraints are logical: for instance, a particular agent will generally only be able
to perform one task at a time. Within each timestep /, this constraint can be expressed for each agent m as

N
Zsl,m,n <L (19)
n=1

Each of the set of LM such constraints would be encoded in terms of a row of A in which exactly N elements
have value 1, in which the other (LMN — N) elements have value 0, and in which the corresponding element
of b also has value 1. More generally, if the task indicated by sy, , requires d; ,, ,, timesteps to complete,
and if agent m will be completely occupied in performing the indicated task until it is complete, then (19)
can be modified to express this constraint as follows:

N dl m,n

Z Z Si+i—1,m,n S 1. (20)

n=1 i=l

Each of the set of LM such constraints, like those of (19), is encodable in terms of a row of A in which all
elements are O or 1, and for which the corresponding element of b is 1.

The formulation of (18) also admits constraints that are operational rather than logical. Simultaneous use of
sensors to service multiple missions might dictate that a sensor only be used a limited number of times in a
given schedule. This constraint can be expressed for each agent m as

L N
YN simn <k 1)

I=1n=1

for some upper-bound k. Each of the set of M such constraints would be encoded in terms of a row of
A in which exactly L elements have value 1, in which the other (LMN — L) elements have value 0, and
in which the corresponding element of b is equal to k. Similarly, use of an active sensor such as radar to
image a particular target might make simultaneous sensing of that target by any sensor impractical, due to
interference concerns. This constraint is expressible for each target n as

Y surimm 2l (22)

dl,m.n
4

L M
Y X
I=1m=1
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Each of the set of N such constraints would be encoded in terms of a row of A in which all elements are O or
1, and for which the corresponding element of b is 1.

The richness of the MILP formulation allows for specification of a wide variety of realistic constraints.
Encoding these constraints mathematically is usually straightforward, as demonstrated with the previous
examples. Translation of these mathematical constraints into rows of A and b is often tedious, but is not
theoretically difficult [10]. Use of a high-level solver interface or advanced modeling language can facilitate
reliable implementation and error-free solution of the sensor-scheduling MILP problem by allowing its
specification directly in terms of mathematical equations or high-level software functions, rather than in
terms of low-level matrices [7].

5 Demonstration

We have implemented a demonstration version of the autonomous multi-platform sensor scheduling system
described here [14]. It is implemented in Matlab, and it provides a modeling, simulation, and visualization
platform for algorithm demonstration and analysis. It enables simulation of targets and sensing platforms
that move either stochastically or according to deterministic trajectories that may be provided via input files.
It allows for specification of realistic models for platform dynamics, target motion, sensor dynamics, and
sensor performance.

The demonstration version of the autonomous multi-platform sensor scheduling statem contains a full im-
plementation of the multi-target tracking mission described in Section 3.1 and a partial implementation of
the multi-target identification mission described in Section 3.2. It is extensible to support other missions
through specification and implementation of other utility functions representing those missions’ measures
of performance, as described in Section 3. The simulation implements strong public and private state parti-
tioning, with information accessibility among different agents limited to that provided by explicit commu-
nication. The public ISR state required for the mission implementation at hand is maintained centrally and
made available to all agents, while the private state needed by each agent to calculate its own utilities is
maintained locally, and is not accessible by any other agents. The simulation contains a full implementation
of the auction process specified in Figure 2. The MILP optimization is formulated as described in Section 4
and is performed using the intlinprog function in the Matlab Optimization toolbox.

The demonstration implementation provides for visualization of the sensing platform and target locations as
the engagement evolves. It also provides for after-the-fact visualization of relevant system metrics, including
the overall measure of performance P and other ancillary quantities. Figure 4 provides two screenshots from
the visualization of a tracking-mission engagement involving three sensing agents and ten targets. The
tracker in this mission is implemented as a Kalman filter tracker, in which location measurements extracted
stochastically by individual sensors from their collected are provided to the auctioneer, which incorporates
them in the public ISR-state target location estimates. The visualization depicted in each image in Figure 4
includes the locations of the sensing platforms and targets, as well as the track covariances of each target
(shown as ellipses in the ground plane). The top image depicts the beginning of an engagement, before
any tasks have been assigned to any sensors; the bottom image depicts a time later in the engagement,
after repeated sensing tasks have reduced the track covariances (as is evident from the smaller ground-
plane ellipses in the bottom image, compared to the top image). This provides a visual indication of the
effectiveness of the auction approach applied to a utility function derived from a mission-specific measure
of performance.
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Figure 4: Demonstration-implementation visualizations of tracking mission: start of engagement (top) and

later in engagement (bottom).
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