This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Porting the RTE+RRTMGP radiative

transfer package for next-generatlon
supercomputers o
E(CP =5

Approved for public release

Benjamin R. Hillman (SNL), Matthew Norman (ORNL), Robert Pincus (CU)

U.5. DEPARTMENT OF Oﬁ"oe of

EN ERGY Science

VA =) ‘
u v A W‘ Sandia National Laboratoriesis amultimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Two paths toward a DOE global cloud-permitting model

» Simple Cloud-Resolving E3SM Atmosphere
Model (SCREAM)

— Rewrite our existing atmosphere in C++/kokkos for
performance portable GPU support with simplified
physics

— Scale up to 3km resolution
— Target simulations in 2021

« E3SM using the Multi-scale Modeling
Framework (E3SM-MMF)

— Multiscale modeling approach,
“superparameterization”

— Cloud resolving convection
— Very high computational intensity — ideal for GPUs
— Fortran with OpenACC for GPU support

ECP B

E3SM-MMF Highlights

 Complete port of the CRM superparameterization to GPUs
— refactored 30K lines of code to enable openACC acceleration
— represents about 50% of the cost of the model
— Port of remaining 40% (RRTMGP package) recently completed

« Summit Early Science Simulation
— 1024 Summit nodes, running at 0.62 SYPD
— 6 year simulation, 300K node-hours

— Running a weather resolving global model (25km) with a cloud resolving 2D CRM (1km
superparameterization)

e Gordon Bell Submission SC2019
— 4600 Summit nodes, ~5.4PF
- 1.8 SYPD with 2km resolution
- 0.22 SYPD at 500m resolution

",
‘\\ EXASCALE
|) COMPUTING
Q.] PROJECT

E

Radiative transfer cost

e Radiative transfer is
expensive: ~1/3 the cost of the
atmospheric physics

 CRM has already been ported
to GPU on Summit: ~15x
speed-up

e This talk: efforts to port the
radiative transfer package to
GPU

ECP B

other

2.3%

radiation

33.3%

Relative cost of physics
packages on Intel Sandy Bridge

crm

64.4%

Radiative transfer package: RTE+RRTMGP

» Rewrite of popular RRTMG

Vit Implementation: levels of abstraction
radiation package

» Expose parallelism Model interface layer (translate model

_ data types to RTE+RRTMGP data types)
* Modern software practices

\ 4

RTE+RRTMGP user interface layer:
Goal: port kernels for modern Fortran (classes)

performance portability, leaving
interface largely untouched

\ Compute kernels: array-based

X
E C‘\\ Y EXASCALE
COMPUTING
Ks]) PROJECT
G

Porting RTE+RRTMGP using OpenACC

e Goal: RTE+RRTMGP fully running on Summit GPU

o Steps:
— Expose parallelism
— Wrap with OpenACC directives without explicit data management
— Compile with ptxinfo flag to highlight generation of implicit data copying code
— Add explicit data management to directives

. EXASCALE
PROJECT

Porting: example
Tightly-nested loops (expose parallelism)

+ '$acc enter data copyvin{spectral_flux_dn, spectral_flux_up) create{broadband_flux_net)

'$acc parallel Lloop gang vector collapse(2)
do ilev = 1, nlew
do icol = 1, neol
broadband_flux_net(icol,ilev) = @
end do
end do

15acc parallel loop gang wector collapse(2)
do ilev = 1, nlev
do icol = 1, ncol
broadband_flux_net(icol,ilev) = 8
end do
end da

'$acc parallel Lloop gang vector collapse(3)
do ilev = 1, nlew
do icol = 1, ncal
do igpt = 1, ngpt
tmp = spectral_flux_dn{icol, ilev, igpt) - spectral_flux_up(icel, ilev, igpt)
'$acc atomic update
broadband_flux_net{icol,ilev) = broadband_flux_net(icol,ilev) + tmp

1$acc parallel loop gang wvector collapse(3)
do ilev = 1, nlev
do icol = 1, ncol
do igpt = 1, napt
tmp = spectral_flux_dn{icol, ilev, igpt} - spectral_flux_up{icol, ilev,
'$acc atomic update
broadband_flux_net(icol,ilev) = broadband_flux_netiicol,ilev) + tmp

end do end do
end do end do
end do end da

'$acc exit data copyout{broadband_flux_net) delete{spectral_flux_dn, spectral_flux_up)

Structured data statements
keep data on the device

P B

Testing

 How do we know we have the right answer (and didn’t screw anything up)?

* Need to test after each code addition!
— Rapid, easy to launch regression tests

» Testing framework based on RTE+RRTMGP RFMIP example code (provided in RTE+RRTMGP Git
repo)

- End-to-end, stand-alone test
— Code: reads in example atmosphere data, computes radiative fluxes due to gaseous absorption
— Test: compare outputs from a test run with outputs from a baseline (before the code modification)

— Challenge: answers are not bit-for-bit due to floating point differences arising from atomic updates on the
GPU (cannot guarantee order of updates)

i,
‘\\ Yy EXRASCALE
i) COMPUTING
3 . PROJECT

Testing: example

Diffs between CPU and reference;
Variable rlu: No diffs

Variable rld differs (max abs difference: 3.814697e-06; max frac. difference:
.051758e-05; max frac. difference:
Variable rsd differs (max abs difference: 6.103516e-05; max frac. difference:

w

Variable rsu differs (max abs difference:

Diffs between GPU and reference:
Variable rlu: No diffs

Variable rld differs (max abs difference: 1.490116e-08; max frac. difference:
.051758e-05; max frac. difference:
Variable rsd differs (max abs difference: 6.103516e-05; max frac. difference:

w

Variable rsu differs (max abs difference:

Diffs between CPU and GPU:

Variable rlu: No diffs

Variable rld differs (max abs difference: 3.814697e-06; max frac. difference:
.051758e-05; max frac. difference:
Variable rsd differs (max abs difference: 3.051758e-05; max frac. difference:

w

Variable rsu differs (max abs difference:

Subjectively, differences order 1e-5 are “tolerable”

Y
% Y EXASCALE
O P &===
k‘ \ PROJECT
SZamd

'_\

|._\

'_\

.178709e-05%)
18322 1e—~05%)
.087066e-05%)

.173428e-05%)
.184619e-05%)
.087066e-05%)

.178709e-05%)
.185221e-05%)
.782132e-06%)

When things go bad...

call zero_array(block_size, def_tsi) call zero_array(block_size, def_tsi)
Isacc parallel loop collapse(2) copy(def_tsi) copyin{toa_flux) Isacc parallel loop collapse(2) copy({def_tsi) copyin(toa_flux)
do igpt = 1, ngpt do igpt = 1, ngpt

do icol = 1, block_size do icol = 1, block_size

ilsacc atomic update

def_tsi(icol) = def_tsi(icol) + toa_flux{icol, igpt)
end do

end do

!sacc atomic update

def_tsi(icol) = def_tsi{icol) + toa_flux(icol, igpt)

end do
end do

Missing atomic update in reduction
operation leads to wrong answers!

Variable rlu: No diffs

Variable rld differs (max abs difference: 490116e-08; max frac. difference: 1.173428e-85%)
Variable rsu differs (max abs difference: 4.540662e+06; max frac. difference: 1.999758e+02%)
Variable rsd differs {(max abs difference: 2.117698e+87; max frac. difference: 1.999758e+02%)

EECP m=

Debugging tools

e Cuda-memcheck
» Valgrind (on CPU)
* Bounds checking (on CPU)

o Simplifying data movement

ECP

Profiling tools

« PGI_ACC_TIME=1: quick timing info for compute vs data movement

fautofs/nccs=svml_homel/brhillman/codes/rte-rrimgp/branches/master/build/. . /rte/kernels-openacc/mo_rte_solver_kernels.F9@
lw_source_noscat NVIDIA devicenum=@
time{us): 10,078
495: compute region reached 1 time
495: kernel launched 1 time
grid: [65535] block: [128]
device time{us): total=10,878 max=10,0878 min=10,078 avg=1@,073
elapsed time{us): total=18,113 max=10,113 min=10,113 avg=10,113
495: data region reached 2 times

 NVPROF: visual representation of profiling data
— Run code on compute node, save nvprof output
— View using nvvp
— Useful for identifying bottlenecks and excessive data movement

X
‘} EXASCALE
E %(|) ID COMPUTING
k’] PROJECT
S

PGl ACC TIME=1 example

fautofs/nccs=svml_homel/brhillman/codes/rte-rrtmgp/branches/master/examples/rfmip-clear-sky/rrimgp_rfmip_Llw.F9@

rrtmgp_rfmip_Llw NVIDIA devicenum=@

time(us): 131
228: data region reached 1 time
228: data copyin transfers: 1
device time{us): total=20 max=20 min=20 avg=20
229: data region reached 1 time
229: data copyin transfers: 1
device time{us): total=13 max=13 min=13 avg=13
238: data region reached 1 time

P

N s

230: data copyin transfers: 4
device time{us): total=32 max=8 min=8 avg=8
253! compute region reached 1 time
253: kernel launched 1 time
grid: [225] block: [128]
device time{us): total=14 max=14 min=14 avg=14
elapsed time{us): total=159 max=159 min=159 avg=159
253: data region reached 4 times
253: data copyin transfers: 1
device time{us): total=9 max=9 min=9 avg=9
381: data region reached 1 time
3@2: data region reached 1 time
382: data copyin transfers: 1
device time{us): total=11 max=11 min=11 avg=11
383: data region reached 1 time
383: data copyin transfers: 4
device time{us): total=32 max=8 min=8 avg=8
J@4: data region reached 1 time

ECP

This is a high-level routine doing
a lot of data movement

NVPROF example

= Process "rrtmgp-data-sw-g2...
[=| Thread 28200480

- OpenACC

- Driver API
L Profiling Overhead
[=] [0] Tesla V100-5XM2-16GB
[=| Context 1 (CUDA)
- 5F MemCpy (HtoD)
L 5F MemCpy (DtoH)

[=] Compute

cuDevicePrimaryCtxRetain

acc_compute construct@mo_gas_optics_kernels.F9... dec C... _ acc_exit_data...

| .
acc wait@mo_gas optics kernels.F00:93 | acc.. | [N (KHICICREN WLITU00 |]

coser | HTRRETCOE ey |

cuStreamSynchronize

[| ol | M1 IEREID |
| I T AT | I ||
O N I’ | ||I| I

After explicit data movement: much less device to host transfers

\

[=I Process "rrtmgp-data-sw-g2...

[Thread 28200480
- OpenACC

- Driver APl
- Profiling Overhead
[=| [0] Tesla V100-SXM2-16GB
[=| Context 1 (CUDA)
L 5F MemCpy (HtoD)
L 5F MemCpy (DtoH)

[=| Compute

ECP s

-I l acc_compute_construct@mo_gas_optics_kernels.F9... 3CC_C... _I

||| |||| acc_wait@mo_gas_optics_kernels.F90:93 ||||| --||

cuDevicePrimaryCtxRetain - I| cuStreamsynchronize .I_||
(I 11

I |] |
| L I
T ntepolaton 93 g | g | (NI [|

|l

Future directions: transition to OpenMP Offload, and managed
memory

» For enhanced portability, we are creating an OpenMP 4.5+ version of the code
— OpenMP 4.5+ includes a kernel offload for accelerators

— OpenMP4.5 and OpenACC have a nearly 1:1 correspondence
« 1$acc copyin() --> !$omp map(to:)
« 1$acc update host() --> !$Somp target update(from:)
« 1$acc parallel loop --> !$Somp target teams distribute parallel for
— Deep copy issues get a little more hairy, but we plan to sidestep that

* We plan to use managed memory
— Automatically pages data to/from GPU (no more data statements!)
— -ta=nvidia,managed for PGl for now (currently there are bugs, though)
— We will replace “allocate()” with custom cudaMallocManaged() routine using the LLNL Umpire pool allocator

i,
‘\\ Y EXRASCALE
i) COMPUTING
3 y PROJECT

Summary and challenges

« RTE+RRTMGP radiative transfer code ported to GPU using OpenACC directives

* The need to minimize data movement between device and host requires adding directives pretty
high up in the code — impossible to confine to kernels

* A number of compiler bug work-arounds needed

* Next step: evaluating performance in the full model

Extra slides

ECP E

Context: Developing a cloud-permitting climate model for DOE
exascale achitectures

» Cloud-resolving simulations (with Ax < 3 km)
avoid the need for convection parameterizations,
which are the main source of climate change
uncertainty (Sherwood et al., Nature 2014)

» Resolved convection will substantially reduce
major systematic errors in precipitation because
of its more realistic and explicit treatment of
convective storms.

* Improve our ability to assess regional impacts of
climate change on the water cycle that directly

affect multiple sectors of the US and global How do we parameterize this sub-grid variability?
economies, especially agriculture and energy

production.

ECP

Radiative transfer package: RTE+RRTMGP

o Separation of concerns

-

RRTMGP

_

» Optical properties

* Source functions

« Spectral discretization:
correlated k-distribution

~

S
ECP ==
COMPUTING
Ks]) PROJECT
S

/RTE: solvers \

One-dimensional plane-
parallel RT equations
Absorption/emission or
two-stream

Adding for transport
Extensible to multi-stream

methods
w

