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Two paths toward a DOE global cloud-permitting model

» Simple Cloud-Resolving E3SM Atmosphere
Model (SCREAM)

— Rewrite our existing atmosphere in C++/kokkos for
performance portable GPU support with simplified
physics

— Scale up to 3km resolution
— Target simulations in 2021

« E3SM using the Multi-scale Modeling
Framework (E3SM-MMF)

— Multiscale modeling approach,
“superparameterization”

— Cloud resolving convection
— Very high computational intensity — ideal for GPUs
— Fortran with OpenACC for GPU support

ECP B




E3SM-MMF Highlights

 Complete port of the CRM superparameterization to GPUs
— refactored 30K lines of code to enable openACC acceleration
— represents about 50% of the cost of the model
— Port of remaining 40% (RRTMGP package) recently completed

« Summit Early Science Simulation
— 1024 Summit nodes, running at 0.62 SYPD
— 6 year simulation, 300K node-hours

— Running a weather resolving global model (25km) with a cloud resolving 2D CRM (1km
superparameterization)

e Gordon Bell Submission SC2019
— 4600 Summit nodes, ~5.4PF
- 1.8 SYPD with 2km resolution
- 0.22 SYPD at 500m resolution
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Radiative transfer cost

e Radiative transfer is
expensive: ~1/3 the cost of the
atmospheric physics

 CRM has already been ported
to GPU on Summit: ~15x
speed-up

e This talk: efforts to port the
radiative transfer package to
GPU
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Radiative transfer package: RTE+RRTMGP

» Rewrite of popular RRTMG

Vit Implementation: levels of abstraction
radiation package

» Expose parallelism Model interface layer (translate model

_ data types to RTE+RRTMGP data types)
* Modern software practices

\ 4

RTE+RRTMGP user interface layer:
Goal: port kernels for modern Fortran (classes)

performance portability, leaving
interface largely untouched

\ Compute kernels: array-based
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Porting RTE+RRTMGP using OpenACC

e Goal: RTE+RRTMGP fully running on Summit GPU

o Steps:
— Expose parallelism
— Wrap with OpenACC directives without explicit data management
— Compile with ptxinfo flag to highlight generation of implicit data copying code
— Add explicit data management to directives

. EXASCALE
PROJECT




Porting: example
Tightly-nested loops (expose parallelism)

+ '$acc enter data copyvin{spectral_flux_dn, spectral_flux_up) create{broadband_flux_net)

'$acc parallel Lloop gang vector collapse(2)
do ilev = 1, nlew
do icol = 1, neol
broadband_flux_net(icol,ilev) = @
end do
end do

15acc parallel loop gang wector collapse(2)
do ilev = 1, nlev
do icol = 1, ncol
broadband_flux_net(icol,ilev) = 8
end do
end da

'$acc parallel Lloop gang vector collapse(3)
do ilev = 1, nlew
do icol = 1, ncal
do igpt = 1, ngpt
tmp = spectral_flux_dn{icol, ilev, igpt) - spectral_flux_up(icel, ilev, igpt)
'$acc atomic update
broadband_flux_net{icol,ilev) = broadband_flux_net(icol,ilev) + tmp

1$acc parallel loop gang wvector collapse(3)
do ilev = 1, nlev
do icol = 1, ncol
do igpt = 1, napt
tmp = spectral_flux_dn{icol, ilev, igpt} - spectral_flux_up{icol, ilev,
'$acc atomic update
broadband_flux_net(icol,ilev) = broadband_flux_netiicol,ilev) + tmp

end do end do
end do end do
end do end da

'$acc exit data copyout{broadband_flux_net) delete{spectral_flux_dn, spectral_flux_up)

Structured data statements
keep data on the device
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Testing

 How do we know we have the right answer (and didn’t screw anything up)?

* Need to test after each code addition!
— Rapid, easy to launch regression tests

» Testing framework based on RTE+RRTMGP RFMIP example code (provided in RTE+RRTMGP Git
repo)

- End-to-end, stand-alone test
— Code: reads in example atmosphere data, computes radiative fluxes due to gaseous absorption
— Test: compare outputs from a test run with outputs from a baseline (before the code modification)

— Challenge: answers are not bit-for-bit due to floating point differences arising from atomic updates on the
GPU (cannot guarantee order of updates)
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Testing: example

Diffs between CPU and reference;
Variable rlu: No diffs

Variable rld differs (max abs difference: 3.814697e-06; max frac. difference:
.051758e-05; max frac. difference:
Variable rsd differs (max abs difference: 6.103516e-05; max frac. difference:

w

Variable rsu differs (max abs difference:

Diffs between GPU and reference:
Variable rlu: No diffs

Variable rld differs (max abs difference: 1.490116e-08; max frac. difference:
.051758e-05; max frac. difference:
Variable rsd differs (max abs difference: 6.103516e-05; max frac. difference:

w

Variable rsu differs (max abs difference:

Diffs between CPU and GPU:

Variable rlu: No diffs

Variable rld differs (max abs difference: 3.814697e-06; max frac. difference:
.051758e-05; max frac. difference:
Variable rsd differs (max abs difference: 3.051758e-05; max frac. difference:

w

Variable rsu differs (max abs difference:

Subjectively, differences order 1e-5 are “tolerable”

Y
% Y EXASCALE
O P &===
k‘ \ PROJECT
SZamd

'_\

|._\

'_\

.178709e-05%)
18322 1e—~05%)
.087066e-05%)

.173428e-05%)
.184619e-05%)
.087066e-05%)

.178709e-05%)
.185221e-05%)
.782132e-06%)




When things go bad...

call zero_array(block_size, def_tsi) call zero_array(block_size, def_tsi)
Isacc parallel loop collapse(2) copy(def_tsi) copyin{toa_flux) Isacc parallel loop collapse(2) copy({def_tsi) copyin(toa_flux)
do igpt = 1, ngpt do igpt = 1, ngpt

do icol = 1, block_size do icol = 1, block_size

ilsacc atomic update

def_tsi(icol) = def_tsi(icol) + toa_flux{icol, igpt)
end do

end do

!sacc atomic update

def_tsi(icol) = def_tsi{icol) + toa_flux(icol, igpt)

end do
end do

Missing atomic update in reduction
operation leads to wrong answers!

Variable rlu: No diffs

Variable rld differs (max abs difference: 490116e-08; max frac. difference: 1.173428e-85%)
Variable rsu differs (max abs difference: 4.540662e+06; max frac. difference: 1.999758e+02%)
Variable rsd differs {(max abs difference: 2.117698e+87; max frac. difference: 1.999758e+02%)
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Debugging tools

e Cuda-memcheck
» Valgrind (on CPU)
* Bounds checking (on CPU)

o Simplifying data movement
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Profiling tools

« PGI_ACC_TIME=1: quick timing info for compute vs data movement

fautofs/nccs=svml_homel/brhillman/codes/rte-rrimgp/branches/master/build/. . /rte/kernels-openacc/mo_rte_solver_kernels.F9@
lw_source_noscat NVIDIA devicenum=@
time{us): 10,078
495: compute region reached 1 time
495: kernel launched 1 time
grid: [65535] block: [128]
device time{us): total=10,878 max=10,0878 min=10,078 avg=1@,073
elapsed time{us): total=18,113 max=10,113 min=10,113 avg=10,113
495: data region reached 2 times

 NVPROF: visual representation of profiling data
— Run code on compute node, save nvprof output
— View using nvvp
— Useful for identifying bottlenecks and excessive data movement
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PGl ACC TIME=1 example

fautofs/nccs=svml_homel/brhillman/codes/rte-rrtmgp/branches/master/examples/rfmip-clear-sky/rrimgp_rfmip_Llw.F9@

rrtmgp_rfmip_Llw NVIDIA devicenum=@

time(us): 131
228: data region reached 1 time
228: data copyin transfers: 1
device time{us): total=20 max=20 min=20 avg=20
229: data region reached 1 time
229: data copyin transfers: 1
device time{us): total=13 max=13 min=13 avg=13
238: data region reached 1 time
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230: data copyin transfers: 4
device time{us): total=32 max=8 min=8 avg=8
253! compute region reached 1 time
253: kernel launched 1 time
grid: [225] block: [128]
device time{us): total=14 max=14 min=14 avg=14
elapsed time{us): total=159 max=159 min=159 avg=159
253: data region reached 4 times
253: data copyin transfers: 1
device time{us): total=9 max=9 min=9 avg=9
381: data region reached 1 time
3@2: data region reached 1 time
382: data copyin transfers: 1
device time{us): total=11 max=11 min=11 avg=11
383: data region reached 1 time
383: data copyin transfers: 4
device time{us): total=32 max=8 min=8 avg=8
J@4: data region reached 1 time
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NVPROF example

= Process "rrtmgp-data-sw-g2...
[=| Thread 28200480

- OpenACC

- Driver API
L Profiling Overhead
[=] [0] Tesla V100-5XM2-16GB
[=| Context 1 (CUDA)
- 5F MemCpy (HtoD)
L 5F MemCpy (DtoH)

[=] Compute

cuDevicePrimaryCtxRetain

acc_compute construct@mo_gas_optics_kernels.F9... dec C... _ acc_exit_data...

| .
acc wait@mo_gas optics kernels.F00:93 | acc.. | [N (KHICICREN WLITU00 | ]

coser | HTRRETCOE ey |

cuStreamSynchronize

[ | ol | M1 IEREID |
| I T AT | I ||
O N I’ | ||I| I

After explicit data movement: much less device to host transfers

\

[=I Process "rrtmgp-data-sw-g2...

[ Thread 28200480
- OpenACC

- Driver APl
- Profiling Overhead
[=| [0] Tesla V100-SXM2-16GB
[=| Context 1 (CUDA)
L 5F MemCpy (HtoD)
L 5F MemCpy (DtoH)

[=| Compute
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-I l acc_compute_construct@mo_gas_optics_kernels.F9... 3CC_C... _I

||| |||| acc_wait@mo_gas_optics_kernels.F90:93 ||||| --||

cuDevicePrimaryCtxRetain - I| cuStreamsynchronize .I_||
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Future directions: transition to OpenMP Offload, and managed
memory

» For enhanced portability, we are creating an OpenMP 4.5+ version of the code
— OpenMP 4.5+ includes a kernel offload for accelerators

— OpenMP4.5 and OpenACC have a nearly 1:1 correspondence
« 1$acc copyin() --> !$omp map(to:)
« 1$acc update host() --> !$Somp target update(from:)
« 1$acc parallel loop --> !$Somp target teams distribute parallel for
— Deep copy issues get a little more hairy, but we plan to sidestep that

* We plan to use managed memory
— Automatically pages data to/from GPU (no more data statements!)
— -ta=nvidia,managed for PGl for now (currently there are bugs, though)
— We will replace “allocate()” with custom cudaMallocManaged() routine using the LLNL Umpire pool allocator
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Summary and challenges

« RTE+RRTMGP radiative transfer code ported to GPU using OpenACC directives

* The need to minimize data movement between device and host requires adding directives pretty
high up in the code — impossible to confine to kernels

* A number of compiler bug work-arounds needed

* Next step: evaluating performance in the full model




Extra slides
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Context: Developing a cloud-permitting climate model for DOE
exascale achitectures

» Cloud-resolving simulations (with Ax < 3 km)
avoid the need for convection parameterizations,
which are the main source of climate change
uncertainty (Sherwood et al., Nature 2014)

» Resolved convection will substantially reduce
major systematic errors in precipitation because
of its more realistic and explicit treatment of
convective storms.

* Improve our ability to assess regional impacts of
climate change on the water cycle that directly

affect multiple sectors of the US and global How do we parameterize this sub-grid variability?
economies, especially agriculture and energy

production.
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Radiative transfer package: RTE+RRTMGP

o Separation of concerns

-

RRTMGP

\_

» Optical properties

* Source functions

« Spectral discretization:
correlated k-distribution

~
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/RTE: solvers \

One-dimensional plane-
parallel RT equations
Absorption/emission or
two-stream

Adding for transport
Extensible to multi-stream

methods
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