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Polymer Motion

• Polymers are simultaneously hard and soft
—Unique Viscoelastic Behavior

• Motion of a polymer chain is subject to topological constraints



Polymer Motion in a Liquid

• Statistical Mechanics
Approach

• Tube model (Edwards 1967)
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--A.-___--__: • Reptation (de Gennes, 1971)



Polymer Topology Matters
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• Linear chains
move like a snake

• Rings move by
an amoeba-like
motion



Polymer Architectures

Polymers not limited to linear chains
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Computational Challenges in Polymers

• Longest relaxation time t '' N3

• Chains are Gaussian coils - R ,- N112
— Number of chains must increase as R3 — N312 so polymer chains do not to
see themselves through periodic boundary conditions

• Double chain length - cpu required increases by at least a factor
of 24.5-- 23

— 1-2 month simulation becomes 2-4 years

• Number of processors limited: -- 400-1000 particles/processor



Polymer Simulation Models

• Bead-Spring Model

• Atomistic: All Atom
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Motion of Unentangled Polymer
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• Once polymer move their own size, unentangled polymers move like
simple liquids



State of the Art: Motion of Entangled Polymer

2 million
core hours

>10 billion
time steps

• t1/4 reptation motion is clearly seen at intermediate times
• Second 0/2 region still unresolved



Atomistic Simulations

• Bond, Angle, Dihedral
— quantum chemistry

• Non-bonded van der Waals
— empirically determined
— Lennard-Jones 12-6, exp-6

• Coulomb interactions
— partial/full charge

• Time step — 1.0-2.0 femtoseconds
1 ns = 106 steps

• Presently limited to 100-1000 ns, 100's thousand — few million atoms



Coarse-Graining of Polymers
• To reach larger length/time scales, new coarse graining methods
are an active area of research

---A117atom
,

Bead-spring

Coarse-grained,
retain chemical-
information

• Reduced number of degrees of
freedom, simpler interaction
potentials, reducing the overall
computational effort

• Larger time steps (2-20x)

• Reduced effective bead friction
due to lower energy barriers
and/or a smoother energy
landscape

• Back-mapping to fully atomistic
model



Degree of Coarse Graining
Polyethylene

C96H194 chain with increasing
degree of coarse graining

K M Salerno et al, Phys Rev Lett 116, 058303 (2016);

B. Peters et al, J. Chem Theory Comp 13, 2890 (2017)

• Largest lengths scales of
polymer dynamics are
controlled by entanglements
• Shortest time and length
scales required to resolve
dynamic properties not obvious

• Probe the degree of coarse
graining (CGing) required to
simultaneously retain significant
atomistic detail and access
large length and time scales



Mapping Dynamics: Coarse Grained to Atomistic
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• Coarse graining reduces the number of degrees of freedom in a
system, creating a smoother free-energy landscape

• Dynamics of Coarse Grained models 6-12 times faster

• Consistent scaling factor for n = 96 — 1920
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Stress Relaxation and Viscosity
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• Longer, more entangled chains form progressively more distinct
plateau region

- Plateau modulus in good agreement with experiment
• Viscosity versus shear rate show shear thinning at high shear rates,
crossing over to shear independent regime

rime and length scales not accessible by atomistic models
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Polymer Topology Effects on Rheology
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• Branching changes the onset of
shear thinning

Coarse grained PE chain
with: = 4



Motion of Comb Polymers

Backbone 120 CG
Beads (480 Carbons)
4 branches 5 Snapshot —

62 ns apart

• Tube diameter Increases with Increasing branch length



Effects of Branch Length on Chain Mobility
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• Increasing branch length results in slower mobility of chains

• Motion of branching points similar to motion of inner monomers



Effects of Branch Length on Tube Diameter

• Extract tube diameter dT from crossover from early time t112 Rouse to t114
reptation regime

8

6

4
0 40 80 1 20

branch length ns
1 GO

i s
. '

Tube diameter d

%

%

Constrained polymer chain
reptating in a tube

Tube diameter increases
linearly with branch length ns



Effects of Branch Length on Chain Relaxation
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• Diffusive time increases
exponentially with branch length
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• End-to-end correlation of the
branches has wide distribution of
relaxation times
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Branching Effects on Stress Relaxation
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CI Stress response function after
a small perturbation G(t) can
be expressed by the stress
autocorrelation function:

G(t) = (V/kBT)<6otp(t)Gui3(0)>

Gap off diagonal element of
stress tensor
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• Plateau modulus decreases with decreasing branch length ns
consistent with reduction in entanglement length and increase in tube
diameter



Summary/Outlook

• Atomistic Simulations ideally suited for phenomena on local scale
- Present limitations 100-1000's nanoseconds, 10's nanometers
- Exascale Computing will extend time and length scale significantly

• Simple Coarse-Grained models ideally suited for addressing general polymer
phenomena, testing basic theoretical models

- Disregards atomistic details
- Can not quantitatively describe properties like structure, local dynamics

• Systematic coarse grained models can bridge the gap of time and length
scales while retaining atomistic characteristics

- Reduces number of degrees of freedom and increases fundamental time step
- Captures the atomistic detail needed for correct dynamics from
monomer to polymer scale



Future Outlook Exascale and Beyond

• Coarse-Grained Models:
- Extend beyond focus on chain mobility
- Stress Relaxation
- Elongational and Shear Flow
- Complex Architectures
- Dispersity
- Polymer Nanocomposites — Tethered Chains/Shape

• Atomistic Simulations
- Hundreds ns/day
- Extend times to 10's-100's ps
- Multi-million atoms simulations
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