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Polymer Motion

* Polymers are simultaneously hard and soft
—Unique Viscoelastic Behavior

* Motion of a polymer chain is subject to topological constraints



Polymer Motion in a Liquid
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- * Tube model (Edwards 1967)




Polymer Topology Matters
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Polymer Architectures

Polymers not limited to linear chains
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Computational Challenges in Polymers

 Longest relaxation time t~ N3

« Chains are Gaussian coils — R ~ N2

— Number of chains must increase as R3 ~ N32 so polymer chains do not to
see themselves through periodic boundary conditions

* Double chain length — cpu required increases by at least a factor
of 245~ 23

— 1-2 month simulation becomes 2-4 years

 Number of processors limited: ~ 400-1000 particles/processor




Polymer Simulation Models

« Bead-Spring Model

Multiple CH,
combined into
one bead




Motion of Unentangled Polymer
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» Once polymer move their own size, unentangled polymers move like
simple liquids



State of the Art: Motion of Entangled Polymer
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Atomistic Simulations

* Bond, Angle, Dihedral

— quantum chemistry
 Non-bonded van der Waals

— empirically determined

— Lennard-Jones 12-6, exp-6
« Coulomb interactions

— partial/full charge

* Time step ~ 1.0-2.0 femtoseconds
1 ns = 10° steps

 Presently limited to 100-1000 ns, 100's thousand — few million atoms



Coarse-Graining of Polymers

e To reach larger length/time scales, new coarse graining methods
are an active area of research

* Reduced number of degrees of
freedom, simpler interaction
potentials, reducing the overall
computational effort

 Larger time steps (2-20x)

» Reduced effective bead friction
Coarse-grained, " due to lower energy barriers
retain chemical  # and/or a smoother energy
information D £~ landscape

» Back-mapping to fully atomistic
model




Degree of Coarse Graining
Polyethylene

CgsH 194 Chain with increasing
degree of coarse graining

K M Salerno et al, Phys Rev Lett 116, 058303 (2016);
B. Peters et al, J. Chem Theory Comp 13, 2890 (2017)

e L argest lengths scales of
polymer dynamics are
controlled by entanglements

e Shortest time and length
scales required to resolve
dynamic properties not obvious

e Probe the degree of coarse
graining (CGing) required to
simultaneously retain significant
atomistic detail and access
large length and time scales




Mapping Dynamics: Coarse Grained to Atomistic
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» Coarse graining reduces the number of degrees of freedom in a
system, creating a smoother free-energy landscape

* Dynamics of Coarse Grained models 6-12 times faster
 Consistent scaling factor for n = 96 — 1920



Stress Relaxation and Viscosity
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 Longer, more entangled chains form progressively more distinct
plateau region
- Plateau modulus in good agreement with experiment

e Viscosity versus shear rate show shear thinning at high shear rates,
crossing over to shear independent regime

* Time and length scales not accessible by atomistic models
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Polymer Topology Effects on Rheology
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* Branching changes the onset of
shear thinning

oV

Coarse grained PE chain
with: A =4




Backbone 120 CG
Beads (480 Carbons)
4 branches

Motion of Comb Polymers

5 Snapshot —
62 ns apart

* Tube diameter Increases with Increasing branch length




Effects of Branch Length on Chain Mobility
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* Increasing branch length results in slower mobility of chains

* Motion of branching points similar to motion of inner monomers




Effects of Branch Length on Tube Diameter

« Extract tube diameter d; from crossover from early time t'? Rouse to t'4

reptation regime
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Constrained polymer chain
reptating in a tube

Tube diameter increases
linearly with branch length ng




Effects of Branch Length on Chain Relaxation
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Branching Effects on Stress Relaxation

 Stress response function after
a small perturbation G(t) can

§ y: be expressed by the stress
= autocorrelation function:
c:o | G(t) = (V/kBT)<GaB(t)GaB(O)>

o, Off diagonal element of
stress tensor
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* Plateau modulus decreases with decreasing branch length ng
consistent with reduction in entanglement length and increase in tube
diameter




Summary/Outlook

» Atomistic Simulations ideally suited for phenomena on local scale
- Present limitations 100-1000's nanoseconds, 10's nanometers
- Exascale Computing will extend time and length scale significantly

« Simple Coarse-Grained models ideally suited for addressing general polymer

phenomena, testing basic theoretical models
- Disregards atomistic details
- Can not quantitatively describe properties like structure, local dynamics

« Systematic coarse grained models can bridge the gap of time and length
scales while retaining atomistic characteristics
- Reduces number of degrees of freedom and increases fundamental time step
- Captures the atomistic detail needed for correct dynamics from
monomer to polymer scale




Future Outlook — Exascale and Beyond

e Coarse-Grained Models:

- Extend beyond focus on chain mobility

- Stress Relaxation

- Elongational and Shear Flow

- Complex Architectures

- Dispersity

- Polymer Nanocomposites — Tethered Chains/Shape

 Atomistic Simulations

- Hundreds ns/day
- Extend times to 10’s-100’s us
- Multi-million atoms simulations
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