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2 Mixed polymer brushes

• multiple polymer species grafted to surface

• microphase separation

• lateral

• vertical

lateral phase separation

0

vertical
phase
separation

Wang, J. Et Mueller, M. J Phys
Chem B 113, 11384-11402 (2009).



3 Mixed polymer brushes

patchy
nanoparticles

Ripplc 3-Rin 4-Rin S LaJi.

X. Ma, et al J Chem Phys 139, 214902 (2013).

surface patterning

A

dry state

switchable surfaces

swollen state

Motornov, M., Sheparovych, R., Tokarev,
Roiter, Y. & Minko, S. Langmuir 23, 13-19 (2007).
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S-M. Hur, et al, Soft Matter 7, 8776 (2011);
Soft Matter 9, 5341 (2013).



4 Assembly of mixed-brush nanoparticles in solution

Interest for
• solvent processing of nanocomposites
• optical applications (eg sensing, plasmonics)
• catalysis
• drug delivery

' =,`

50 nm

Zubarev et al., JACS, 2006 Song et al., JACS, 2012

Self-Assembly

Hydrophilic
brush

Hydrophobic
brush

Guzman-Juarez et al, Macromolecules, 2018

What is the structure of mixed-brush nanoparticles?

What governs the self-assembly of mixed-brush nanoparticles?



5 Previous modeling of mixed brush nanoparticles

polymer self-consistent field theory (SCFT)

non-selective good solvent
XABN = 40

Wang et al., J. Chem. Phys., 2011

neat particles
zABN = 20

Morphology of

single particle
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Chen et al., ACS Macro Lett., 2016

How realistic are these structures? What about fluctuations?



6 Theoretically-Informed Langevin Dynamics (TILD)

discrete Gaussian chains + NPs

monomer shape function

nanoparticle shape function

bond length b, a = = b/2

hm(r) (27a2)-312 e—Ir12 12a2

hp(r) = po erfc 11 RP 
2

Langevin eq for chains, particles:

d2r1
mi 

dt2

Fi = Fbond

dri ,
Fi — D—

dt

Fint

= Gaussian white noise

/ A
* hB)(r)monomer-monomer interactions: u(r) XAB 

(/-2,
Po

repulsive interactions:

bonding potential:

ue(r) = (hi * hi) (r)

3
13ubond 
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1'342



Theoretically-Informed Langevin Dynamics (TILD)

Particle-to-
mesh
scheme

1. Evaluate bonded forces on all
particles (beads in chains)

2. Interpolate particle positions to
density on mesh

3. Calculate non-bond forces as fields
on the mesh

4. Translate to forces on each particle;
update particle positions

Similar to:

• Ganesan (SCBD: self-consistent Brownian
dynamics)

• MOIler (SCMF: single-chain-in-mean-field)
• de Pablo (TICG: theoretically-informed

coarse-grained sims)

evaluate Fro (r, t) = — driVu(r — ri)p(ri, t)

(in k-space with FFT)

1



Riggleman group implementation

Include torques on grafted nanoparticles

Solve Langevin equation with Gronbech-Jensen
and Farago (GJF) scheme

allows large timesteps
good performance compared to DPD simulation

N. Gronbech-Jensen and O. Farago, Molecular Physics (2013)

Chao, H., Koski, J. Et Riggleman, R. A. Soft Matter 13, 239-249 (2017).

0.05

a)

0.04 —

0.03

-̀g 0.02

0.01

10
3

102

10
o

0
0

— CL
Qp DMFT, PM 1

DMFT, PM4

*—* DPD

1

2

0.64

0.60

=E ().56

0.52

3

10

2 5 3 3.5 4
rcut

4.5 5

4 5 6

Go DMFT, PM1
0-0 DMFT, PM4

0-0 DPD

100

•



9 Digression: grafted NPs in homopolymer matrix

035

-e- 0.5-

0.25
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— MM IrL = 3 kg/mol, 
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0.75 1



10 I Digression: grafted NPs in homopolymer matrix

PMMA-g-S102 in PS

Mn,AA = 0.95 kg/mol (PS)
Mn,G = 7.9 kg/mol (PMMA)
6 = 0.26 chains/nm2

scale = 1 ium
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Koski et al, Macromolecules (2019)



11 I Digression: grafted NPs in homopolymer matrix

Fluctuations
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Koski et al, Macromolecules (2019)



12 Rest of the talk

• mixed brushes on single particles

• SCFT structure

• TILD structures

• assembly of mixed brush NPs

• TILD only



13 Single mixed brush NPs: nonselective solvent

equal chain lengths, NA = NB = 60
equal fractions, fA = fB = 0.5
monomer size d = 0.73b
zABN = 28.3

XAS - XBS - Xs

vary: Rp/Rg, al Zs

Three calculations:

1. SCFT with uniform grafting density

2. SCFT with random grafting density

3. TILD with random grafting density

Uniform Discrete

0.05

0.0



1 4 SCFT for single particles

(I)A (I)B

zABN = 28.3

zs = 1

Rp/Rs = 1/3

CY = 1 .7/C12
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1 5 SCFT for single particles

(I)A (I)B

(0C,
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16 SCFT for single particles

RP /Rg = 1
(I)A

8
(I)B

zABN = 28.3

Zs = 1

a = 1.7/d2
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17 Random discrete grafting sites, SCFT

uniform grafting is unlikely
allow random discrete grafting

a = 1.7/d2 Rp/Rg = 1/3

Uniform Grafting

Mean-Field

Discrete Grafting

Mean-Field

Uniform

Rp/Rg = 1

Discrete
0.0

Rp/Rg = 5/3

zABN = 28.3

zs = 1.0

8 • •
ego••••••

random grafting structures are less ordered



18 Disordered brush structures, Rp/Rg = 5/3

(131A

SCFT, random grafting
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(1)A

Disordered brush structures, Rp/Rg = 5/3

SCFT, random grafting
(I)A

TILD, random grafting



20 TILD vs SCFT

random grafting + thermal fluctuations

6 = 1.7/d2 Rp/Rg = 1/3

Uniform Grafting

Mean-Field

Rp/Rg = 1

zABN = 28.3
zs = 1.0

Rp/Rg = 5/3

Discrete Grafting

Mean-Field $S8•••
Discrete Grafting

Fluctuations 888•••
prediction: Janus phase robust to fluctuations!

J.P. Koski and A.L. Frischknecht, ACS Nano 12, 1664 (2018).



21 Experimental evidence of grafted Janus NPs?

PS-PEO on Zr02 NPs

1H NMR spin diffusion

(a) Single patch

0 5 10 15

t 2

20 25 30

Guzman-Juarez, B., Abdelaal, A., Kim, K., Toader, V. & Reven, L.
Macromolecules 51, 9951-9960 (2018).

consistent with

13 nrn

Two patches

. .............................



22 Mixed brush NP assembly in selective solvent

example: PEO-PS on Zr02 in THF/water

P5 fraction

0.19 Densely packed spheres
(dia. 30-36 nm) ,D

100 nrn
:p

6̀;:3
ip

0.40 Densely packed spheres
(dia. 45-60 nm)

,;,.&.

0.93 Vesicles,
(dia. 75-115 nm)

.

,
Guzman-Juarez, et al,
Macromolecules 51, 9951-9960
(2018).



23 Rest of the talk

• mixed brushes on single particles

• SCFT structure

• TILD structures

• assembly of mixed brush NPs

• TILD only

•

1



24 I Mixed brush NPs in selective solvent

Rest of talk:

A chains in bad solvent: zAs = Zs

B chains in good solvent: zi3s = 0

immiscible chains: zAB = 1

For asymmetric chain lengths,
get vertical phase separation

0.5
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-9-
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0.125

•
•
•

•
•

A (solvophobic)
B (solvophilic)

•

0.1

0.001

0.0001

RP = 2b, 6 = 1 /b2 (50 grafted
chains per particle)

zs = 1.25, NA = 6, NB = 54

fA = 0.5

B (solvophilic)

y = x
-4/3

10 15 20 25 2

r (b)
4 6 8 10

r (b)
30

Daoud-Cotton for stars

rNJ r
-4/3



25 Dispersed phase

zs = 1.25, NA = 6, NB = 54

fA = 0.5

long solovphilic chains
short solvophobic chains

80 particles initially in center of box



26 Macrophase separation

zs = 2, NA = 54, NB = 6

fA = 0.5

short solovphilic chains
long solvophobic chains

0.5

A (solvophobic)
  B (solvophilic)

0.375

%

-9-
0.25

%
i
%

0.125

 1
10 15 20 25

r (b)



27 "Ordered" NP assemblies: similar chain lengths

A chains in bad solvent: zAs = 1.25

B chains in good solvent: zi3s = 0

immiscible chains: zAB = 1

80 particles initially in center of box

NA = NB = 54, ffi, = 0.5, 6 = 1 /V



28 "Ordered" NP assemblies

A chains in bad solvent: zAs = 1.25

B chains in good solvent: zi3s = 0

immiscible chains: zAB = 1

•

it

,IL • '
]. •

80 particles initially in center of box

NA = NB = 54, fA = 0.5, 6 = 1 /b2

Rp = 0.7Rg

equivalent single NP

average configuration

0.5

0.375

-e-
0.25

0.125

A (solvophobic)

B (solvophilic)

4 6 8
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29 "Nearly Vesicle"

zs = 2, NA = 54, NB = 24

fA = 0.5

10b thick slices:

 Os.
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30 "Connected strings"

zs = 2, NA = 24, NB = 24

fA = 0.5

10b thick slices:

N

*
N 

it

N



31 "Janus" nature of mixed brush NPs

x=11(comA)-(comB)II

2

1
0

, I 1,
1.5  2 2.5 3 3.5 4

Xs

0 mixed, NA = NB = 24

0 mixed, NA = NB = 54

0 Janus, NA = NB = 24

Janus, NA = NB = 54



32 1 "Janus" nature of mixed brush NPs

x = I I (comA) - (coMB)

bi

AMP
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Janus-grafted vs random-grafted NPs

Janus

Zs = 3, Na = 24, Nb = 24

Zs = 3, Na = 54, Nb = 54

random



34 Phase maps for random-grafted

Zs = 2

1.5.
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0.5

Dispersed

fA = 0.25
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35 Conclusions

• single mixed brush NPs

• TILD predicts more defective NPs than SCFT

• Janus phase robust to fluctuations

• mixed brush NP assembly

• very asymmetric systems: dispersed or phase separated

• similar chain lengths, volume fractions

• Janus-like single particles

• stringy or vesicle-like aggregates

• more clear structure for higher zs

to *
*SO 410.
4010U.60



36 Future Directions

• further quantify assembly

• phase behavior of homopolymer-grafted NPs in solvent

• dynamics?

PS-Au NPs in cyclohexane
24 -

22 -

20 -

.9, 18 -

10 -

8 -

6
1E-6 1E-5 1E-4 1E-3 0.01

(i)
0.25 0.50 0.75 1.00

courtesy Rich Vaia



37 Structure of polymer brushes

free polymers are random walks

Re r) N1/2

brush: put 6 chains/unit area

if close enough in a brush,
polymers must stretch:

3h2F = BT [ k +
[ 2Na2

w N2 o-

h 1
stretching entropy interactions

minimize free energy:

h rN N(aw)1I3



38 Challenges in modeling mixed brush nanoparticles

challenge 1: size scales make direct particle simulations difficult

0
CO

atomistic: miktoarm stars

4 8 16functionality
32

BaEova, R, Glynos, E., Anastasiadis, S. H. and
Harmandaris, V. ACS Nano 13, 2439-2449 (2019).

b)

Brownian dynamics

7- = 1. 54
Dispersed

= 2. 13
Aggregated

Martin, T. B. et al. J Am Chem
Soc 137, 10624-10631 (2015).

N = 10
P = 50



39 SCFT for single particles

XABN= 18.9

Rp = (2/3)Rg

•

1.0

cf.)
0.75

uniform grafting density

•

0.5  , • 

1.07 2.15 3.22

ff [b-2]

zABN = 28.3
zs = 1.0

use Boltzmann weight to interpolate phase
boundaries

exp(-01i)

PZ Ei exp(-07j)



40 I Full SCFT phase diagram
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41 I Riggleman group implementation

Include torques on grafted nanoparticles

Solve Langevin equation with Gronbech-Jensen
and Farago (GJF) scheme

rk,,9 (tn) = 2 brk,s(tn_l) — a rk,3 (tn_2) + b åt2 [f1(013) (tn_i) + fi(c11,s1)) (tn—
b 8t+7[0,,,,(tn)+ ok,s(tn_1)],

allows large timesteps
good performance compared to DPD simulation

N. Gronbech-Jensen and O. Farago, Molecular Physics (2013)
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Chao, H., Koski, J. Et Riggleman, R. A. Soft Matter 13, 239-249 (2017).



42 I Vary chain lengths

Zs = 2
fA = 0.5 Long ̀Solvophilic'
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Medium ̀Solvophilic'

Long 'Solvophobic'

Short 'Solvophilic'

Long 'Solvophobic'

Sc
he
ma
ti
c 

C..

. is"
4 ,

Cll
CIJ z

1 0 . 4.,

C

7

 . ( 7 ) 2

• •A 

•

. ' .

t  1

. ,  -

Afit

,
•

. 111 111)

a)
. c u
co 42
2 co0_

o. Iii
stio"
410. 4,

It'-4114,N4

.4 *

Dispersed

,A.
4 'er
,,. 0, AP

44 119*

'14 
40

vit.

t si

,
4

4

"Connected

nit

11 114 ..

Strings"

AEI

. ±illi '' 1 :

. ,

AMIN Pr

"Nearly Vesicle" Phase

. .

Separated



43 I Classify observed assemblies

define cluster: all particles with at least 1 A monomer
located within 2b of another A monomer on a different
particle

nc = number of clusters

nA = avg # of particles per cluster

K2 = relative shape anisotropy of clusters

K2 = 0: sphere
K2 = 1: rod

nA < 1.5 dispersed

1.5 < nA < 3 small clusters

3 < nA < nmax K2 > 0.22 stringy aggregates

0.13 < K2 < 0.22 loops/vesicles/?

K2 < 0.13 macrophase separated

nA = nmax macrophase separated

Dispersed Small Clusters Connected Strings Nearly Vesicle Phase Separated



44 Lower xds

Zs = 1.25

1.0

RgA/ Rp

0.25

1.5 0.5 0.5 1.0 1.5

R,A/Rp

0,75



45 1 Lower zs

• less distinct brush structures
• more "messy" assmblies



46 I Comparison of solvent qualities

xs= 2

Xs =1 25
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4, I Experimental evidence of grafted Janus NPs?

SANS

dPS-PMMA on Au NPs

(c)

o'

10
.2

3

— Mixed-3
3

l 2 3 4 5 6

Scattering Length Density (1010 an.2)

SLD„,1= 1.06 x 10'" = 2.5 x 1019 cm"' SLD‘o, = 35 x 101" cnr2 SLDw,, = 4.51 x 10'" SL13„,, = 5.66 x 10ID c

Janus Mixed anus Mixe Janus Mixe Janus Mixed

Kim, S., Kim, T.-H., Huh, J., Bang, J. & Choi, S.-H. ACS
Macro Lett. 4, 417-421 (2015).

a

b

c

HAADF

PS-PMMA on Au NPs

spectrum image map

•
10nm

10 cm

10 nm

•
10 nm

10 nm

simulation

Rossner, C., Tang, Q., Willer, M. & Kothleitner,
G. Soft Matter 14, 4551-4557 (2018).

EELS for
polymers


