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, | Mixed polymer brushes

= multiple polymer species grafted to surface

= microphase separation
= |ateral
= vertical

lateral phase separation
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Wang, J. & Mueller, M. J Phys
Chem B 113, 11384-11402 (2009).




| Mixed polymer brushes o

switchable surfaces
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| Assembly of mixed-brush nanoparticles in solution

Interest for
» solvent processing of nhanocomposites @
. . : . . Self-Assembly

» optical applications (eg sensing, plasmonics)
. Catalysis —»Hyd:lc‘)grl:lhc
* drug delivery ‘ - Hydrophobic

brush

200 nm

Zubarev et al., JACS, 2006 Song et al., JACS, 2012 Guzman-Juarez et al, Macromolecules, 2018

What is the structure of mixed-brush nanoparticles?
What governs the self-assembly of mixed-brush nanoparticles?




s | Previous modeling of mixed brush nanoparticles H

polymer self-consistent field theory (SCFT)

non-selective good solvent neat particles
XABN = 40 XABN = 20
Morphology of “ e
single particle
@ ) © (@ speraahs, V3 14

Wang et al., J. Chem. Phys., 2011 Chen et al., ACS Macro Lett., 2016

How realistic are these structures? What about fluctuations?



Theoretically-Informed Langevin Dynamics (TILD)

discrete Gaussian chains + NPs

monomer shape function o (T) =

nanoparticle shape function hp(r) =

bond length b, a={=b/2

Langevin eq for chains, particles:

dzri dI’l
> it

Fi = I:bond i I:int

= Gaussian white noise

(27Ta2)—3/26—|r|2/2a2

— erfc

2

|I'| — Rp>
G

monomer-monomer interactions: u(r) = XAB == (haxhp)(r)

Po
IaY
repulsive interactions: ue(r) = 2—p0(hi + hj)(r)
. - 3 )
bonding potential: BUpond = ﬁhs —Trsi1|



7 | Theoretically-Informed Langevin Dynamics (TILD)

o %", 0

|
W Particle-to-

mesh

blr, t) scheme o{x, t)

1. Evaluate bonded forces on all
particles (beads in chains)

2. Interpolate particle positions to
density on mesh

Similar to:

« Ganesan (SCBD: self-consistent Brownian
dynamics)

* Mduller (SCMF: single-chain-in-mean-field)

» de Pablo (TICG: theoretically-informed
coarse-grained sims)

3. Calculate non-bond forces as fields ——— evaluate Fin:(r,t) = —/dl‘/vu(r —1')p(r', 1)

on the mesh

4. Translate to forces on each particle;

update particle positions

(in k-space with FFT)



5 | Riggleman group implementation

Include torques on grafted nanoparticles

Solve Langevin equation with Gronbech-Jensen
and Farago (GJF) scheme

allows large timesteps
good performance compared to DPD simulation

N. Gronbech-Jensen and O. Farago, Molecular Physics (2013)
Chao, H., Koski, J. & Riggleman, R. A. Soft Matter 13, 239-249 (2017).

0.05

0.04

mf

0.03

I /11

0.02

m

(IT

0.01

0

I

I

a)

— CL

G-© DMFT, PM,
A-ADMFT, PM,

*—= DPD

1

[ | | [
0.64

DPD
= 0.60- % =a -
s §
= 056} % %
R o S

0

N

(%7

—~
-

Time [min]




9 | Digression: grafted NPs in homopolymer matrix
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o | Digression: grafted NPs in homopolymer matrix

PMMA-g-Si0, in PS

M, w = 0.95 kg/mol (PS)
M, = 7.9 kg/mol (PMMA)
o = 0.26 chains/nm?

scale = 1 um

- | | I ' @ 1.90
12 | oo PNC-FT (no Fluctuations)| | ; 5,
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Koski et al, Macromolecules (2019)




: | Digression: grafted NPs in homopolymer matrix d

Fluctuations Mean-Field

5".-«" mbf

A SFIuctuatlons >A SMean-FieId

extra entropy leads to extra depletion interactions

Koski et al, Macromolecules (2019)



» | Rest of the talk

« mixed brushes on single particles
o SCFT structure

 TILD structures

« assembly of mixed brush NPs
« TILD only




13 1 Single mixed brush NPs: nonselective solvent

(0]
equal chain lengths, N, = N; = 60 8 " o%as °
equal fractions, f, = f; = 0.5 e °
monomer size d = 0.73b o &
YasN = 28.3 o SRELY? o
Xas = Ags = As o °© o 0O
o o 0] o

vary: Rp/Rg, G, %s

Three calculations:

1. SCFT with uniform grafting density
2. SCFT with random grafting density

3. TILD with random grafting density

0.1
. - i )
0.0

Uniform Discrete



u I SCFT for single particles

XABN = 28.3
xs =1

R,/Ry=1/3
c =1.7/d2

radial brush/solvent profiles




s | SCFT for single particles

XABN = 28.3
xs =1

R,/Ry=1/3
c =1.7/d2

density isosurfaces at ¢ = 0.5




. . 1N = 28.3
« | SCFT for single particles XAB_1 . |
-
c=1.7/d?
Rp/Rg =1 R,/R,=5/3 |
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7 | Random discrete grafting sites, SCFT

0.1
uniform grafting is unlikely xasN = 28.3
allow random discrete grafting 0.05
XS = 1.0
0.0

Uniform Discrete

o=1.7/d? Re/Ry = 1/3 Re/R, = 1 Re/Ry = 5/3

Uniform Grafting
Mean-Field

Discrete Grafting
Mean-Field

random grafting structures are less ordered




1 | Disordered brush structures, Rp/R, = 5/3

SCFT, random grafting




1w | Disordered brush structures, Rp/R, = 5/3

TILD, random grafting

SCFT, random grafting

Op
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0 | TILD vs SCFT

XABN = 28.3
random grafting + thermal fluctuations s = 1.0
c=1.7/d? Rp/Ry=1/3 Rp/Ry =1 Rp/Ry=5/3

Uniform Grafting
Mean-Field

Discrete Grafting
Mean-Field

Discrete Grafting

Fluctuations

prediction: Janus phase robust to fluctuations!

J.P. Koski and A.L. Frischknecht, ACS Nano 12, 1664 (2018).



1 | Experimental evidence of grafted Janus NPs?

PS-PEO on ZrO, NPs

consistent with

"H NMR spin diffusion
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Guzman-Juarez, B., Abdelaal, A., Kim, K., Toader, V. & Reven, L.
Macromolecules 51, 9951-9960 (2018).

7.5 nm



» | Mixed brush NP assembly in selective solvent

example: PEO-PS on ZrO, in THF/water

0.19 Densely packed spheres
(dia. 30-36 nm)

PS fraction

0.40 Densely packed spheres
(dia. 45-60 nm)

0.93 Vesicles,
(dia. 75-115 nm)

Guzman-Juarez, et al,
Macromolecules 51, 9951-9960
(2018).




» | Rest of the talk

* mixed brushes on single particles
o SCFT structure

 TILD structures

« assembly of mixed brush NPs , F0 @ t:? .
g, Ry
+ TILD only R A
g WIEVH 6 TRy "
& *ﬁww:
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.« | Mixed brush NPs in selective solvent

A chains in bad solvent: y,s = ¥s
o _ R, =2b, o =1/b? (50 grafted
Rest of talk: B chains in good solvent: ygzs = 0 chains per particle)

immiscible chains: y,z = 1

For asymmetric chain lengths, Xs = 1.25, Ny = 6, Ny = 54

get vertical phase separation f,=0.5
0.5 | |
— A (solvophobic) A 2
----- B (solvophilic) 0.1 _ ) ¥
0.375 - . ; -
‘4 A
0.01 § T 8
- 0.25 |- =
015 | | 0001 T | Daoud-Cotton for stars
----- -4/3
. y =X —4/3
o(r) ~ 1=
0 e L 0.0001 |
0 15 20 25 2 4 6 8 10 30




»5 | Dispersed phase

%s = 1.25, Ny = 6, N5 = 54 long solovphilic chains
f,=0.5 short solvophobic chains

80 particles initially in center of box

°




% | Macrophase separation

short solovphilic chains

XS=2, NA=547 NB=6
long solvophobic chains

fA = 0.5

0.5

0.375

0.25

0.125

— A (solvophobic)

B (solvophilic)

L
20

25



7 | “Ordered” NP assemblies: similar chain lengths

A chains in bad solvent: y,c = 1.25 80 particles initially in center of box
B chains in good solvent: ygs = 0 N,=Ng =54, f,=0.5 c=1/b?

immiscible chains: y,z = 1

; : (’




28

“Ordered” NP assemblies

A chains in bad solvent: y,c = 1.25
B chains in good solvent: ygs = 0

immiscible chains: y,z = 1

80 particles initially in center of box

N, = Ng = 54, f, = 0.5, ¢ = 1/b?
Re = 0.7R,

equivalent single NP

0.5 | |

— A (solvophobic)
0375 |\  |----- B (solvophilic) |-
- 0.25 _
0.125 L _
e
average configuration (FR)/R



» | “Nearly Vesicle”

s = 2, Ny, =54, Ng = 24
fA=O.5

10b thick slices:




» | Connected strings”

XS=2’ NA=24’ NB=24
fA=O.5

10b thick slices:




“Janus” nature of mixed brush NPs
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32 | “Janus” nature of mixed brush NPs

A =|](com,) - (comg)] |




s | Janus-grafted vs random-grafted NPs
vs =3, Na = 24, Nb = 24

Janus

%5 = 3, Na = 54, Nb = 54




1 | Phase maps for random-grafted

Xs = 2 fy=0.25 f,=0.5 fy=0.75
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s | Conclusions

» single mixed brush NPs
* TILD predicts more defective NPs than SCFT

« Janus phase robust to fluctuations

* mixed brush NP assembly
« very asymmetric systems: dispersed or phase separated
» similar chain lengths, volume fractions
« Janus-like single particles
» stringy or vesicle-like aggregates

* more clear structure for higher y,

€08




% | Future Directions

further quantify assembly

phase behavior of homopolymer-grafted NPs in solvent

dynamics?

PS-Au NPs in cyclohexane

204

Temperature (°C)

6

21,500 PS PGN
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. —
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courtesy Rich Vaia



w | Structure of polymer brushes

free polymers are random walks

Re ~ N1/2

brush: put o chains/unit area

if close enough in a brush,
polymers must stretch:

3h? wN?o
F =LkgT 5 —+
2Na h
stretching entropy  interactions

minimize free energy:

h ~ N(ow)'/3




3 | Challenges in modeling mixed brush nanoparticles

challenge 1: size scales make direct particle simulations difficult

Arm length

160

80

40

atomistic: miktoarm stars

functionality 16

Bacova, P., Glynos, E., Anastasiadis, S. H. and
Harmandaris, V. ACS Nano 13, 2439-2449 (2019).

Brownian dynamics

N =10
P =50

T =1.54 T =2.13
Dispersed Aggregated

Martin, T. B. et al. J Am Chem
Soc 137, 10624-10631 (2015).



w» | SCFT for single particles

yapN = 18.9
uniform grafting density
Rp = (2/3>R9

XABN = 28.3
XS = 1.0

1.0 P
use Boltzmann weight to interpolate phase
boundaries
3075 p—" =
\\ p, = _XP(=6F)
. =
05k . a D _; exp(—BFj)

1.07 2.15 3.22
o [b_Q]



4 | Full SCFT phase diagram
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" | Riggleman group implementation

0.05 T T T T T
a) 0.64
0.04- = 060 % Ll g -
Include torques on grafted nanoparticles - E sl $
= 0.03 % % 3
— OS2 Eospospesymenss
F 25 3 35 4 45 5
. . o 20.021 cut -
Solve Langevin equation with Gronbech-Jensen = — L
&-© DMFT, PM
and Farago (GJF) scheme 0.01- AADMET, PM,
*=* DPD
0 | | |
9 (b) (nb) 0 1 2 é 4 5 6
Pha(tn) = 2bTke(tn1) —  Pia(tn2) + DL (bns) + B (ts) |

b ot
+7[gk,s(tn) W gk,s(tn—l)]:

allows large timesteps
good performance compared to DPD simulation

Time [min]

100
N. Gronbech-Jensen and O. Farago, Molecular Physics (2013)

Chao, H., Koski, J. & Riggleman, R. A. Soft Matter 13, 239-249 (2017).



2 | Vary chain lengths

xs = 2
fa=10.5 Long ‘Solvophilic’ Medium ‘Solvophilic’ Medium ‘Solvophilic’ Short ‘Solvophilic’
Short ‘Solvophobic’ Medium ‘Solvophobic’ Long ‘Solvophobic’ Long ‘Solvophobic’
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s | Classify observed assemblies

define cluster: all particles with at least 1 A monomer
located within 2b of another A monomer on a different

particle

nc = number of clusters

n, = avg # of particles per cluster

k2 = relative shape anisotropy of clusters

k% = 0: sphere
k% =1: rod

ny,< 1.5 dispersed
1.5<n,<3 small clusters
3<nNy<nNg | K2>022 stringy aggregates
0.13<x2<0.22 |loops/vesicles/?
k2 <0.13 macrophase separated
Np = Ny macrophase separated

]

e

o

Dispersed Small Clusters

Connected Strings

Nearly Vesicle

Phase Separated






less distinct brush structures
more “messy” assmblies




» | Comparison of solvent qualities
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4 | Experimental evidence of grafted Janus NPs?

dPS-PMMA on Au NPs PS-PMMA on Au NPs
(c) ¢ — Mixed-3 . HAADF spectrum image map X-Vie::mumion

EELS for
polymers

SANS ol

I(q)

1 2 3 4 5 6
Scattering Length Density (10" em™)

SLD,,=1.06 x 10" em? SLD_,=25x10"em?  SLD,=35x10"cm? SLD_,=4.51x10""cm? SLD_, =5.66 x 10" cm*?
i = b |

Kim, S., Kim, T.-H., Huh, J., Bang, J. & Choi, S.-H. ACS Rossner, C., Tang, Q., Mlller, M. & Kothleitner,
Macro Lett. 4, 417-421 (2015). G. Soft Matter 14, 4551-4557 (2018).




