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1. Brief overview

1. Why not use DSMC?

2. What other methods are there?
2. Quasi-Particle Simulation (QUIPS)

1. Distribution function representation

2. Collision integral evaluation

3. Remapping scheme

3. Hybridization

1. Why hybridize in velocity space?

2. Velocity-space hybridization particulars
1. Velocity space decomposition

2. Collisions

3. Merging

4. Numerical results
1. Single species
2. lonization rate computation

5. Conclusion
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• Statistical fluctuations, issues with modelling of low-speed and
transient flows

• Difficulty resolving low populations
• Excited internal states
• High-velocity particles
• Trace species
• Difficulty resolving low-probability events (e.g. recombination

reactions)
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•ther methods for rarefied flows

• DSMC modifications

• Variance-reduced DSMC (e.g. N. Hadjiconstantinou et al.)

• Variable-weight DSMC (e.g. S. Rjasanow et al., I. Boyd et al., R.

Martin et al.)

• Distributional DSMC (e.g. C. Schrock et al.)

• Fokker-Planck-DSMC (e.g. M. Gorji et al, P. Jenny et al., M.

Torrilhon et al.)

• Model equations (e.g. BGK, ES-BGK, Shakhov model)

• Spectral methods (e.g. I. Gamba et al., A. Alexeenko et al., L. Wu et

al., L. Pareschi et al.)
• Discrete velocity methods(e.g. F. Tcheremissine et al., V. Aristov et

al., D. Goldstein et al., P. Varghese et al., L. Mieussens et al.)
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Discrete Boltzmann Equation

Discrete velocity method:
• Select a fixed (discrete) set of allowed velocities

• Can replace integral collision operator with a sum

• Separate convection and collision parts

In scaled form:

d° + n • V , 1 [(lin ikl) /(1/a(e)] /gil&t
at Kn

Here 0(C) is the (scaled) number of particles in a volume 163 centered

around 16 is the grid spacing

DVM at UT Austin: Quasi-Particle Simulation Method (QUIPS)

TEXAS
The University of Texas at Austin Conwational FkOd Physics Lab

NE
ODEN

5



DSMC vs QUIPS

DSMC QUIPS
"Fixed mass, variable velocity "Fixed velocity, variable mass

particles." quasi-particles."
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Allows resolution of tails/
trace populations up to

machine precision
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IMPS collisions

How to compute collision integral?

A Monte-Carlo method:
• Select two discrete velocity locations (based on their mass)
• Deplete them by a small value; replenish mass
• Repeat many times
• Parameter that controls number of collisions/noise

1
Nc011 (-12

Noise parameter

— 2fi„g)2
= Ai sign ((,,,ykk)) krat

2KnATcoll
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QUIPS collisions

How to compute collision integral (replenishment)?

Find post-collision velocity (random point on a sphere)

1;

g'

vx

ii,

r:g'
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• ulPs Collisions: Remapping

But velocity does not necessarily lie on grid!

• Remap post-collision mass to 7 points on grid

• Conserves mass, momentum, energy

• Produces (small amounts of) negative mass

Ve,y

V.A 1,y

.
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UPS summary

QUIPS (Quasi-Particle Simulations):

• Strictly conservative

• Can handle multiple species, non-uniform grids
• Can handle internal energies (rotational, vibrational)
• Can model chemical reactions
• Variance reduction
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Hybridization in velocity space

What happens if we combine DSMC and QUIPS

representations? V,

►

QUIPS mass

Vy

DSMC particles

TEXAS
The University of Texas at Austin

ME

ODEN
Computabonal Fluid Physics Lab

1 1



ybridization in velocity space

Why hybridize in velocity space?

• Faster (represent bulk of distribution with a few particles)
• DVM have issues when there are discontinuities in boundary

conditions

Previous work:

• G. Dimarco, L. Pareschi (2008) - BGK solver, DSMC for tails, DVM for bulk

• T. Pan, K. Stephani (2016) - DSMC for bulk, DG for tails

• T. Pan K. Stephani (2017) - DSMC for bulk, BGK for tails
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How to hybridize?

• Pick region in velocity space where VDF is represented by DSMC

particles

• Use DSMC collision mechanics (instead of small depletion/

replenishment)
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Sources of new particles in DSMC region?

1.Post-collision velocity lies inside the region

2.Remapping

3.Collision of two variable-weight DSMC

particles: requires splitting
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How to avoid (exponential) growth of number of particles?

• Do conservative N:2 merging

• Current work utilizes a simple grid-based approach (M*M*M

merging cells); CPU time r•J 0(Np + M3); additional RAM rd 0(M3)

Vz

Vy
o 5

1

O

Vx

TEXAS
The University of Texas at Austin Computational Fluid Physics Lab

NE
ODEN

1 5



Hybrid QUIP SMC

Example of hybrid VDF representation
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Numerical results

Single-species test case

• Initialize with Maxwellian distribution, look at noise (RMSE) in high-

order moments (gives more weight to higher-velocity tails)

• CPU time per step vs. RMSE as measure of efficiency

RMSE(M8)
1

n
t=1

(M8(t) Mr)

2

Variable parameters:

1. Extent of velocity grid

2. Velocity grid spacing

3. Noise parameter (CRims)
4. Extent of DSMC region 

5. Number of merging cells (-number of DSMC particles) 
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Hybridization options
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RMSE of 8th moment

Computational time per collision step vs. error in tails

—•— QUIPS, 293 grid

--•-• QUIPS, 153 grid

Hybrid, 293 grid, 128 DSMC particles
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Want results to be here

—•— Hybrid, 293 grid, 1024 DSMC particles

Hybrid, 153 grid, 128 DSMC particles
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Numerical results

lonization rate computation

• Initialize with an Ar/e- mixture, compute electron-impact ionization

rate coefficient (based on cross-sections given by Thompson,

Smirnov [Lieberman and Lichtenberg, 1994])

• CPU time per step vs. RMSE as measure of efficiency

Simulation parameters: T= 300K; 2eV < Te < MeV; 0.1% ionization
Hybrid/variable weight DSMC code uses 128 particles unless stated

otherwise

Possible hybridization options:

1. Ar, e- as hybrid
2. One species as DSMC, other as pure QUIPS
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Error in ionization rate coefficient

Error in tails due to low number
of particles/points on grid

lo"

Error in tails and rate
coefficient due to noise in
collision scheme and
low event probability
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Electron-impact ionization rate
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Analytic (Thompson)
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CPU vs. error, low temperature

Te 2eV 
-a- SPARTA DSMC Argon, pure QUIPS e

Pure QUIPS DSMC Argon, hybrid e

102 103
Error, %
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Te 5eV 
SPARTA

Pure QUIPS

DSMC Argon, pure QUIPS e

DSMC Argon, hybrid e
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Te

rror, high temperature
100eV

SPARTA

Pure QUIPS

DSMC Argon, pure QUIPS e-

DSMC Argon, hybrid e

DSMC Argon, hybrid e (Np= 16)
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RAM vs. error, high temperature

Te 100eV

SPARTA

—0— Pure QUIPS

DSMC Argon, pure QUIPS e

10 o

DSMC Argon, hybrid e

DSMC Argon, hybrid e (Np= 16)

Error, %
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Conclusions

• A new approach to modelling rarefied gas flows based on a velocity

space hybridization has been developed and tested for O-D

problems

• Such an approach can give better computational efficiency

(compared to a pure QUIPS approach) and less RAM usage

(compared to SPARTA), especially for flows where trace species are
important

Current efforts:
• 1-D and 2-D problems

• Internal energies

• Variance reduction
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