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Advantages of Quantum Computing

• Potential for easily breaking current
encryption

• Ciritical speedup of computationally
hard problems

9/13/19

103 -

E
o - Classical

- (o(exp(N/logN. loglogN)))

— Quantum (o(logN3))

104 106
Input Length

los

Senii9
atonal

10.

3



The (still current) Challenge of Quantum Computing

• Many qubits are needed, but at the
same time long coherence times are

required

• Solid state systems ideal candidate for
high qubit density

• Single color centers (defect or donor)
in wide-bandgap materials: Potential
for high-density and long coherence
time
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Deterministic Placement of Single-Quantum Emitters

• Coherent single photons are essential
for transmitting quantum information

• Single quantum emitters (SQE) are a
source of coherent photons

• Currently SQE are mostly found, not
made in samples

• To unlock the potential of SQE in
solid state systems deterministic
placement of SQE is necessary

• Too close, interaction is too strong
• Too far apart, hard to entangle
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Focused ion beams allow precise (< 40 nm)

implantation of defects in virtually any ma-

terial and donors in materials such as dia-

mond
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10

Focused lon Beams as a Route to Deterministic SQE Placement

• Focused lon Beams (FIB) have focal spot sizes in the lOs of nm range
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Focused Ion Beams from the nanolmplanter

• 100 kV accelerator using liquid metal alloy ion sources

• Access to ion species from approx. 1/3rd the periodic table
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Focused Ion Beams from the nanolmplanter

• Prior work has done timed and in-situ counted implantation but has not yet
checked for in-situ SQE behaviour
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In-Situ Photoluminescence Detection for SQE Measurement

• Add a photoluminescence (PL) setup to the FIB column No

• Use PL and Hanbury-Brown-Twiss (HBT) measurement to

unambiguously determine SQE creation

• Implant, then check for PL immediately, if PL is visible, check 
Yes

for SQE with HBT

• Keep implanting until a SQE has been generated at the implant

location, determined by HBT result
Yes
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Design of the Custom In-Situ Microscope

• Microscope objective in vacuum
chamber for in-situ PL detection

• z-axis movement to adjust for different
focus of ion beam and optical
microscope

Measu PL/HBT

DS.
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How Much Signal Can

• Overall detection

estimated to be

Component

We Expect?

efficiency is

10%
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• Expected count rates from literature:
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Wang et al., J. Phys. B: At. Mol. Opt. Phys., 39, 1 (2006)
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Sample Holder Redesign

• Current sample holder does not have
z-adjust

• Need to adjust sample height to focus
in FIB and microscope
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Sample Holder Redesign

• Current sample holder does not have
z-adjust

• Need to adjust sample height to focus
in FIB and microscope

• Add in capability to do counted
implantation as well as in-situ PL
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Conclusion
• Demonstrated the ability to perform

high-resolution implantation (< 50 nm in x and

• Implantation depth accuracy (z axis) limited by
straggle
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Conclusion

• Demonstrated the ability to perform
high-resolution implantation (< 50 nm in x and

• Implantation depth accuracy (z axis) limited by
straggle

• Currently silicon implantation into diamond is
of limited use since the yield for optically active
defect centers is low

• Use the in-situ PL microscope on the
nanolmplanter to deterministically create
optically active defect centers with high
resolution
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Counted Implantation

• Requires wire bondpads next to

implantation region

• Does not confirm that implanted

region is emitting light

• Problems arise with Si implantation
into diamond where yield is only
approx. 3%

• Use SiC for testing of the microscope
where yield is 10 — 20%, then move
on to diamond
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Hanbury-Brown-Twiss Measurement

■ SQE can only emit one photon at a
time

■ Each photon will be transmitted or
reflected at the beamsplitter being
detected at only one of the two
photodiodes
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Hanbury-Brown-Twiss Measurement

■ SQE can only emit one photon at a

time

■ Each photon will be transmitted or
reflected at the beamsplitter being

detected at only one of the two
photodiodes

■ Timed correlation measurement shows
that within lifetime of SQE,

correlation is close to zero
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