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Anapole is a non-radiating source realized by destructive interference of electric and toroidal dipole radiation, with its origin in nuclear physics. Recently it started to gain attention in the field of nanophotonics for its superior ability to confine and enhance the
electromagnetic energy within a resonator. Yet, non-radiative nature of the anapole mode has so far constrained most of the experimental studies to the near field regime, especially at visible and near-infrared wavelengths. Here, we report a high quality factor
anapole resonance in visible and near-infrared frequencies, realized in dielectric nanocubiods metasurfaces. Coupling between resonators are maximized due to the rectangular shape of the resonator and the metasurface configuration, resulting in a high quality
factor resonance delocalized over a wide area of resonators. We experimentally observe Q-factors of 500 and 160 at near-infrared and visible frequencies, by using silicon (n=3.6) and titanium oxide (n=2.3) as the dielectric, respectively. Numerical simulations
indicate that the hole in the middle cause the field to be enhanced by a factor of ̂J20 at the resonance, which would be ideal for refractometric sensing or strong light-matter interaction.
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Anapole: toroidal dipole + electric dipole

• Far-field radiation patterns of an electric dipole
and a toroidal dipole are identical, perfectly
cancelling each other when the two dipoles
overlap (image from [1]).

Charges

Electric dipole

Currents Magnetic
field

NI LIToroidal dipole

Emits no
radiation

Anapole

• The anapole mode can be most conveniently
described with multipole decomposition. [2]
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Anapoles in nature
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• Parity non-conserving transition
requires a toroidal dipole
moment, which was measured
in 6S47S transition of cesium.

[3]

• Some molecules with toroidal
symmetry support static
anapoles. [4]

• Anapole is the only allowed
electromagnetic form factor of
Majorana fermions, which
might relate to the dark matter.

[5]
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Anapole moments in metallic metamaterials
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• The first realization of toroidal dipole excitations in
photonics was made at microwave frequencies. [6]

\ 1 ; 1 \ .

111111 IBC•MI 11111

\

• Hybrid aperture-split ring resonator supports
anapole mode at near-infrared (IR) wavelengths. [7]
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• Near-field measurement of anapole field profile was made on a silicon
nanodisk at visible wavelengths. [8]
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• The highly concentrated electric energy at anapole resonance can be
beneficial in enhancing third harmonic generation. [9]

Result high-Q anapole resonances in visible & near-IR

Dielectric nanocuboid metasurfaces for anapole resonance
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Ti02 (n = 2.3)
P = 450 nm,
I = 400 nm,
g = 35 nm,
h = 100 nm

Metal strip

• Feature sizes down to r'i35 nm is successfully
realized.
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• The additional dip in Si measurement is possibly
due to asymmetry in the structure.

Simulations and multipole decomposition (Ti02)
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• Strong toroidal response and field enhancement
at/on the gap is observed.
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• With dielectric metasurfaces of nanocuboids, high quality factor anapole resonance could be achieved at visible and near-IR.

• Dielectrics with a relatively low refractive index (n < 2.5) are also capable of supporting the anapole, with a well-designed structure
and good fabrication.

• The large field enhancement at the gap, together with the high quality factor, is expected to be beneficial in strong light-matter
interactions, refractometric sensing and nonlinear phenomena.
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