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Abstract

Anapole is a non-radiating source realized by destructive interference of electric and toroidal dipole radiation, with its origin in nuclear physics. Recently it started to gain attention in the field of nanophotonics for its superior ability to confine and enhance the
electromagnetic energy within a resonator. Yet, non-radiative nature of the anapole mode has so far constrained most of the experimental studies to the near field regime, especially at visible and near-infrared wavelengths. Here, we report a high quality factor
anapole resonance in visible and near-infrared frequencies, realized in dielectric nanocubiods metasurfaces. Coupling between resonators are maximized due to the rectangular shape of the resonator and the metasurface configuration, resulting in a high quality
factor resonance delocalized over a wide area of resonators. We experimentally observe Q-factors of 500 and 160 at near-infrared and visible frequencies, by using silicon (n=3.6) and titanium oxide (n=2.3) as the dielectric, respectively. Numerical simulations

indicate that the hole in the middle cause the field to be enhanced by a factor of ~20 at the resonance, which would be ideal for refractometric sensing or strong light-matter interaction.

Result — high-Q anapole resonances in visible & near-IR
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