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Revisiting Nonlinear Optics

High . .
nonlinearity High fields

Energy and momentum
conservation: phase matching



Paths to Nonlinear Metasurfaces

= Metallic/Plasmonic over “engineered” nonlinearity




. Nonlinear Metasurfaces:
Metallic Resonators + Engineered Nonlinearity

Optical Phonons: Nano Letters 11, 2104 (2011)
Epsilon Near Zero modes: Nano Letters 13, 5391 (2013)
Intersubband Transitions: Nature Communications 4, (2013)

For linear phenomena:



Materials for NLO (i.e., SHG)

Intersubband
transitions
~x1000

® |nAs

InSe
GaAse

*DSTMS

*InP e GaS

€3 eeGaP
CdSe" GaSe LiNbO

4
Band Gap, eV




Resonant x(?) in a Three-Level System

Using perturbation theory:

~250 nm/V - QWs
~15 of pm/V - LiNbO,
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Metasurfaces Coupled to Resonant x(?)

Resonators are designed to have resonances at
30 & 60 THz (5&10um)

resonators
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SHG: Power and Frequency Dependence

Pump: CW CO, laser

N

® Experiment
P —AE1N4 P2
P, 45107 P,

SH power [uW]
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120
Pump power [mW] Pump Photon Energy [meV]

» Saturation and damage are issues
* Max. conversion efficiencies of few % are possible

 Added functionality is the advantage

Nature Communications 6, 7667 (2015)
See also: Lee, Belkin, Alu, et al. Nature 511, 65-69 (2014).
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SHG Beam Manipulation
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flipping resonators induces it phase shift beam
10m pump /
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More complex manipulation is possible, depending on metasurface arrangement
See also work by Alu&Belkin, and Ellenbogen

Nature Communications 6, 7667 (2015)



" Metasurfaces Coupled to Resonant x(?): Optimizing

Efficiency

Local field enhancement
(100 nm beneath top Au layell‘z)
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iMax efficiency:

18.2 mW/W? (Belkin & Brener 2018)

e 1 31x10° pm V™

(With Belkin’s group)

Sandia: Nature Comm. 6, 7667 (2015)
Belkin & Alu, Nature 511, 65-69 (2014).
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Scaling to Shorter Wavelengths

Material 1 Material 2 Material 1

e direct gap
o indirect gap

.MgSe
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¢ Near IR SHG (3.2um>1.6um) Using AlGaN/GaN
QWs

Scaling of resonators
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Near IR SHG (SHG @~1.2um) Using AlISb\InAs

The Conduction Band Offset of 2.1 eV

red: IST sample
black: InAs substrate
scale factor

AlSb  InAs

ity, shifted (arb. u.)

Growth Direction z (n

Energy (eV)

510.3 meV

Design for SHG

Growth Direction (nm)
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Paths to Nonlinear Metasurfaces

Tellurium Silicon GaAs
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1. Nonlinear All-Dielectric 111-V Metasurfaces

Epitaxially grown: MBE, MOCVD

n~3.5
n~1.6

0
Advanced Opt Mat 2016 800 900 1000 1100 1200 1300
Wavelength (nm)
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l. Nonlinear All-Dielectric Il1I-V Metasurfaces: SHG

Nano Letters 2016
Also ANU, Costa (ltaly)

SHG wavelength (nm)

400 450 500 550

[
S
S
-

ey
=
s
A
)
~
©
2]
=
ot
~N )
=
©
QO
an
0]

900 1000 1100

Pump wavelength (nm)

ACS Photonics 2018, 5, 1786-1793
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Nonlinear Optics with All-dielectric Metasurfaces

' [ ' i - THG in a mirror-enhanced Imngithe TG
Vacuum Ultraviolet Light High-harmonic generation M AIGAAS Nanodimers
Generation anapole resonator

==

—1
ZnO )
B Metasurface Unpatterned Si

AR
\\ HH7

L)
2
>
O]
i
T

-
o
w

400 350 300
Wavelength (nm)

Semmlinger, M. et al. Nano Lett.,

Article ASAP Liu, H., et al. Nature Physics (2018): 1. Xu, Lei, et al. Light: Science Rocco, D., et al. Photonics Research
icati - 1-8. 5 (2018): B6-B12.
DOI: 10.1021/acs.nanolett.8b02346 giack uceiions I ZUHE N 6.5 (2018): B6
Nonlinear wavefront Selective Third-Harmonic - e
control Generation unable

And a lot of good work by
other groups: Kivshar,
Neshev, Staude, Valentine,
Maier, de Angelis, etc

Resonator Radius (nm)

Melik-CayjkazyaniER NS T Shcherbakov, Shvets et
Wang, L., et al. Nano letters i : e X al, Nature Comm. 2019
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Higher Harmonics: Mixing Several Beams

The closest thing to an electronic mixer for optics

Nature Comm. 2018

Reflectivity
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Polina Vabishchevich
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Frequency mixing spectra
Photon energy (eV)
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Nature Comm. 2018

7 different nonlinear processes: 2", 3rd, 4th harmonics, sum frequency generation, 4 wave-
mixing, six-wave mixing:
simultaneous high order processes with no phase matching and comparable efficiency
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v(3), @) v6) .. or Not?

Electric Field Amplitude

A
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Back to the future....

TEEE PHOVIDENECS TECHMNOLOGY LETTERS, YO 11, M0, &, JUNE 199

1.5-pm-Band Wavelength Conversion

Based on Cascaded Second-Order
Nonlinearity in LiNbO3; Waveguides

M. H. Chou, 1. Brener, M. M. Fejer, E. E. Chaban, and 5. B. Christman
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IEEE FHOFPOMICS TECHNOLOGY LETTERS, WOL. 12, MOk 1, IAMLUARY 2000

Efficient Wide-Band and Tunable Midspan Spectral
Inverter Using Cascaded Nonlinearities in LiNbO3
Waveguides

M. H. Chou, Member, IEEE. 1. Brener, Member, IEEE, (G. Lenz, R._ Scotti, Member, IEEE. E. E. Chaban,
J. Shmulovich, D. Philen, 5. Kosinski, K. B. Parameswaran, Member, IEEE, and M. M. Fejer, Member, IEEE

1560 1565 1570 1575
Wavelength (nm)
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The Best of Both Worlds: Mie Metsurfaces and IST’s!

4 levels -> y(3)

Energy (eV

9 10 15 20 25
Growth Direction (nm)

Height (h) determines the number of repetitions of QWs we can embed into the resonator.
MD resonance can be spectrally scaled by changing R, ( h = 1.25 pm for our case)
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Precursor to Nonlinear Experiments: Strong Coupling Il (&)
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Comparison of SHG (normalized by spot size)

Nonlinear Metasurface Approaches

IST + Plasmonic Resonator + Metal
Backplane + Etching of QWs

IST+ Leaky Mode Resonance
IST + Plasmonic Resonator

GaAs/AlGaAs nonlinear Mie
metasurfaces

IST + Mie Resonator (Not
optimized !)

Maximum Normalized
Conversion Efficiency
(W/W2%/cm?)

1746 ( Experimental)

101 ( Experimental)
29 ( Experimental)

0.05 ( Experimental)

3250
(14 micron spot size)
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Nonlinear Optics in Metasurfaces: How to Optimize?

Traditional nonlinear Nonlinear optics with
optics with crystals metasurfaces

SHG crystal

(XZ)Z Iw o< Q to QZ o ¢ n2—4

I, & Ic% (XZ)Z ~n’

However with an additional resonance at 2 it could be

7 ¥ 2
I, x Q(w) )’ X n




7 Q:SHG from Broken Symmetry Metasurfaces
(or Bound States in the Continuum)

&

SHG Intensity (a.u.)
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13-fold enhancement of SHG in Broken
Symmetry metasurface compared with
the nanodisk Mie metasurface
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Dependence on n
Spherical Mie Resonator

Single sphere, n=5
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Index is not a big knob ® (at least for SHG and cascaded NLO)

Cascaded




?  Nonlinear Optics
Constraints

1.93 Second Harmonic Generation Coefficients

Crystal System —Cubic

Cubic Symmetry dim Wavelength
muaterial cluss (pm/V) A (um)
jlt [‘Em} NaBrO3 23 0.19 0.6943
P.(2w) NaClO3 23 4= 046 0.6943
P.(2w) — - L
BiyGe0 2 28 1.064
CdTe £ 63 10,6
28,0
INTRODUCTION TO
NONLINEAR ... Cubi £ 30% 10,6
OPTICAL An additio f 20% 1318
. EFFECTSIN nhase-matched ) 1,1:-4
: o 0.946
! gl%ﬁ:ﬂlﬁ:lss d45 is the large
er in Sect el
4.0+ ] 1318
7F;QFC_ISN, Prasad 397+ 200 1.064
David J. Willarns 147+ 20% 0.946
8.04 + 30% 10.6
547+ 20% 1318
6,08+ 20% 1.064
6.04 + 200 0.946
1341 10.6 k
5 209.54 1058 L
In metasurfaces, all field 2565 S 1
7T18+12.3 1.058

components can contrib o
nonlinearities A A

628 + 6.3 10.6

364 + 47 1058 l

249 + 62 10,6



Nonlinear Optics with Dielectric Metasurfaces: the
“new rules”

« Fundamental beam induces spatial distribution of E(w) in
resonator (usually a resonator mode)

» The vector components of E(w) contract quadratically
with the tensor components of y(? to generate P(2w):

P, Qw) = )(l( ]2;2
* P(2w) excites a distribution of resonator modes at 2w

« Angular distribution of second harmonic radiation
dictated by radiation distribution of the excited
modes

Second
harmonic
emission

Rich physics!
Plenty of opportunity for tuning & optimizing

desired behaviors.
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High-harmonic generation in Epsilon Near Zero
materials

2.08 uym, 50 fs

Gold [l CdO: In

» Physics of ENZ & Berreman modes: Physical Review B 91, 121408 (2015).
« fsec switching with CdO ENZ films: Nature Photonics 11, 390 (2017)

* Doped CdO as ENZ material: Nature Materials 14, 414 (2015)

 HHG: Nature Physics 2019
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High Harmonic Generation
High-harmonics are used to generate attosecond pulse

Gas-phase HHG Solid-phase HHG
. Pump

HHG
—4%—» Crystal —

Enargy (eV)

See review by Ghimire &
Reis, Nat. Phys. 2018
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Hormaonic signal {urbitrary units)

BO
wevelength (nm)

M. Ferray et al, Journal of Physics B (1988) S. Ghimire et al, Nature Physics (2010)

Pros:

 Compact setup

Cons:

 Low damage threshold

« Absorption above bandgap

Pros:
« High damage threshold

Cons:
 Cumbersome setup
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HHG

enhanced by Plasmonics

Gas-phase HHG enhanced by plasmonics:

102

Photons (x107) per second

Input pulse % T 4 4
lt,’ \
. ' "w-' EUV - t‘\l‘ A EUV
Enhanced laser field

Input pulse

20 30 40 50 60 70 80 90 100 110 120 130
Wavelength (nm)

S. Kim et al, Nature (2008)

Solid-phase HHG enhanced by plasmonics:

Wavelength (nm)
420 350 300 263

On nanostructures, || pol.

Off nanostructures, || pol.
On nanostructures, L pol.

[
g
£
©
£
O
(7]
Q
(%]

G. Vampa et al, Nat.. _ . ..
(2017)

Problem:
Low damage threshold!
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Epsilon Near Zero thin films might provide a
new platform for HHG

2.08 uym, 50 fs

Gold [l CdO: In

» Lower optical power density
* No patterning or nanostructuring
 No damage
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PHYSICAL REVIEW VOLUME 182, NUMBER 2 10 JUNE 1969

Surface Plasmons in Thin Films

E. N. Economou*f

The James Franck Institute and Department of Physics, The Universily of Chicago, Chicago, Illinois 60637
(Received 15 January 1969)

e, T e e e

Insulator
AT
Metal 7/,

Insulator

Econoumou, 1969
Burke et al, 1986
etc

“Thin” here: ~20nm for
~400nm plasma
wavelength

Long range surface plasmon

Short range surface plasmon

0

) expru,s.mns for k)\k or k«k fur the curves
shown schematically here are (3.23h) and (3.18).

What happens when the layer becomes much thinner?
(<< skin depth)




Film thickness dependence of surface
plasmons and ENZ mode dispersion

thickness >> skin depth

Re(w)/w,

1. Vassant, Marquier, Greffet et
al., Phys. Rev. Lett. 109, 237401
(2012)

2. Vassant, Marquier, Greffet et
al., Opt. Express 20, 23971

(2012)

3. Campione, Brener, Marquier,
Phys. Rev. B Rapid Commun. 91,
121408 (2015)
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ENZ Modes: E, is Constant and Large

Phys. Rev. B Rapid Commun.
91, 121408 (2015)

S F— -~

“Thin” is better
But not too thin .....
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High Quality ENZ Material: High Mobility CdO

Low Loss

Y:CdO has more than 10x
higher mobility than ITO
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1.8 20 22
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HHG Spectrum

A (nm)
300 250 200

s-pol
—— p-pol
(5) = p-polx10*

2
Photon Energy (eV)

HHG from 3 to 9th
order

10 GW/cm? pump intensity (TW/cm? required for typical gas or solid phase HHG)!

Non-perturbative
scaling



Source of Nonlinearity

inusoidal-field driven electron in
a nhon-parabolic potential

_ de
j(t) = —e%— —

Sinusoidal field driven free electron

d
= = eEysin wt

dt @

de ek, B

j() = —e—= -
—_

op  mw

hZ
02 ¢&(k)
o0k?2

Since m*(e) =

Z
For parabolic band, e“Ey cos wt

it ==
d 2e2EScos?wt
= constant mw|l+ -
m w Eg

0%e(k)

m* is constant since
k2

P. Guo, et. al., Nat Photon (2016)




41

HHG Spectral Shift and Broadening

Hot electron dynamics in CdO:

T

Time-varying resonant wavelength in CdO:

2.05k

300 K

Pump
Wﬂﬂv »- T = 1000s K

Relaxatlonv

0 02040608 1
t(ps)

Nature Physics 2019

AFHG (nm)
40 40 40

T.=300K

=
I
e,
2
>
O
ke
T

26 28 3 2
Photon Energy (eV)

Maybe this broadening can be used to recompress pulses




Summary

Free of phase matching constrains, nonlinear metasurfaces offer a new

playground for nonlinear optics: nonlinear mixing, HHG, etc.

I
Sio, LN
InGaAs/AllnAs
MQWs "
2.08 um, 50 fs : I

ENZ materials provide a new path for High-harmonic

generation with lower powers and interesting physics.

Gold [l CdO: In
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