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2 I Helium Interactions with Materials
Reactor Materials
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Sources: Iter, AZPM news, J.T. Busby Nanonuclear Workshop (2012), EI-Atwani Nuclear Fusion (2014) 54, Fundacion General CSIC, Thielmann, AG Materials,
physics.Utah.edu. .



Bubbles and Cavities: Palladium as a model FCC system

1.

Nanobubbles and Nanocavities
 [B-decay
* Implantation

2. Bubble evolution mechanisms

(a) =»

* Nucleation

« Bubble growth

« Migration and coalescence
« Cavity formation
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Sefta et al, Nuc. Fus. 53 (2013)
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3. Tritium B-decay causes He bubbles to form in PdT
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4. Implantation experiments were done using pure Pd.
Minimal oxide concerns.




1.

Multiple Advanced In-situ TEM Techniques were Combined to Increase
Our Understanding of He Behavior in Palladium

In-situ Helium Implantation
B Accelerated aging: reach high He concentration
without making radioactive samples
B Bubble nucleation kinetics, nucleation sites, and
growth
®m How He behavior changes at room, elevated, and
cryogenic temperatures

In-situ Annealing in Vacuum
B How bubbles evolve under extreme temperatures

B Provides microstructural information important for
interpreting thermal desorption data

B Accelerated aging method for understanding long-
term bubble growth
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In-situ He Implantation: Bubble Nucleation as a Function of Temperature

Pseudo-In-situ Room Temperature Implantation, T/T,,; = 0.16

Before He implantation

After He implantation to ~6.9%x10'6 He/cm?
(14 at.% He)

Homogenous
distribution of
helium bubbles

No preferential
nucleation at GBs.
Indicates very little
diffusion before
trapping +
nucleation.




7 1In-situ He Implantation: Bubble Nucleation as a Function of Temperature

During in-situ implantation at 250°C (below, T/T, = 0.29) and 400°C (T/T,, = 0.37), He bubbles nucleated at
boundaries and inside the grains

Before He implantation ‘

*Note that fluence measurement is an overestimate during in-situ implantation
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9 I In-situ Annealing: Bubble Diffusion and Growth at Elevated Temperatures

Sample implanted with helium at room temperature was annealed in-situ. This sample appeared to have a
much higher helium content.
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Pre-existing
void
mBlisters form at boundaries by absorbing nearby cavities

M arge faceted cavities form inside the grains by absorbing smaller bubbles and possibly He from the matrix
M Blisters eventually burst, leaving behind a denuded zone at the boundary. Material remains in-tact.
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10 Iln-situ Annealing: Bubble Diffusion and Growth at Elevated Temperatures

Samples implanted with helium at elevated temperatures were annealed in-situ. These samples appeared to have a
much lower helium content. Same behavior was observed in both samples, sample implanted at 400°C shown below.

In-situ annealing at 550°C, T/T,, = 0.45 In-situ annealing at 700°C, T/T,, = 0.53

Q ;

B Bubble growth by bubble migration and coalescence
B Bubbles remain tied to boundaries during grain growth and appear to pin boundaries in some cases
B Some bubbles appear to be strongly trapped inside grains (e.g. at defects)




11 1 In-situ Annealing: Bubble Diffusion and Growth at Elevated Temperatures

In-situ anneal was also performed on tritium aged Pd- 5% Ni alloy containing ~12 at.% He (similar to the sample
implanted with 14 at.% He at room temperature and annealed).

In-situ annealing at 400°C , T/T,, = 0.37 In-situ annealing at 900°C , T/T,, = 0.64

M Facets indicated that cavities are near equilibrium by T/T,, = 0.37
M At high temperature, cavities coalesced or reached the surface, leaving behind denuded zones
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Helium Implantation

Room Temperature High Temperature
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He becomes trapped immediately at room temperature, not
very mobile. Diffuses before trapping at high temperature.
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Annealing in Vacuum

High He Concentration

Low He Concentration
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Growth through absorption of nearby cavities with high He
concentration, facet formation at ~T/T,,= 0.4 as thermal
vacancy concentration increases. Growth through bubble
diffusion and coalescence with low concentration.

Grain Boundary Interaction

Bubbles Pin Boundary
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Release from Boundary
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Growth through absorption of nearby cavities with high He
concentration, facet formation at ~T/T,,= 0.4 as thermal
vacancy concentration increases. Growth through bubble
diffusion and coalescence with low concentration.
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In-situ He Implantation: Bubble Nucleation as a Function of Temperature

Collaborators: Jonathan Hinks, Steve Donnelly, Robin Grimes, Emily Aradi

In-situ cryogenic helium implantation in a H, gas environment was performed on one sample using the
in-situ helium implantation environmental TEM at Huddersfield in the UK.

H, gas flow at -100°C H, gas flow at -100°C, H, gas flow at -60°C, after H, gas flow at 0°C, after He
after He implantation to ~ He implantation implantation
1.0 x 10" ions/cm?

m E-TEM gas pressure was in the mTorr range, so cryogenic temperatures were required for hydriding. At 1 mTorr, the
concentrated hydride phase should eventually form at temperatures <-95°C, however, hydrogen diffusion and hydride
reaction kinetics are unknown at cryogenic temperatures.
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All Images at 100 KX Magnification

In-situ Annealing of Tritium Aged Pd-5% Ni in Vacuum Protochips
~25°C, T/T 016 ~100°C, T/T,= 0.20 150°C, TT,=023  _ 200°C, /T,

No data No data

300°C, T/T,,= 0.31
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All Images at 100 KX Magnification

In-situ Annealing of Tritium Aged Pd-5% Ni in Vacuum Protochips
_450°C, T/TM 0.40 500°C, T/M 42 “ 550°C, T/T\= 0.45 600°C, T/T,= 0.48

No data No data




19 I In-situ Hydriding Post-Annealing

mCooled the annealed sample to 200°C, filled the stage with 1 atm H, gas, and 10 e+ Oa02
performed 5 hydride cycles between the dilute and concentrated phases by 160 ramarae  {1.£18 L% H)
switching between 200°C and 80°C.

’m‘

Desorption

m Could clearly observe movement into the two phase region and then into the

concentrated region through movement of bend contours, as well as sample drift
and z-height changes.

=77 === = Toncentrated = Ldtpe— - -
60
M No obvious changes in bubble size.

Pd hydride (37-6 at% H)

5t hydride cycle, 200°C 5t hydride cycle, 80°C ™« iw m w0 ww o g m s o 1o




