
Unclassified Unlimited Release

Citadel Data Frames:
An Architecture for Managing Legacy Data

Stephen Jackson

Citadel is a custom code framework designed to quickly roll out multiple data storage
applications at Sandia National Laboratories. Citadel helps projects by providing
features common to all data system applications. These include: enabling CRUD
operations, tracking changes to the data (via a user accessible provenance database),
parsing common data types into Parquet-Avro files, opening RESTfuI API's for third
party tools to interact with the data (see posters on WASP), and establishing custom
access controls to data on a granular level.

Currently the two implementations of Citadel are the SEDS and DataSEA projects.
SEDS focuses on replacing a large legacy data system. It has hard-coded data
structures and rules for accessing data. DataSEA focuses on quickly rolling out smaller
data systems that allow the users to determine their own data structures and custom
rules for storing, accessing, and manipulating data.

Data Frame Group Work Flow

Data Frame Creation Request

Input Files

Processing Task

Citadel Application

Citadel based data systems needs to ingest data from a variety of legacy sources.
Legacy data sources are typically mixed bundles of metadata or data in problematic
formats. For example:

• Metadata/Data was stored in one-off formats that were not easily parse-able.
• Binary blobs grouped many channels of timeseries data into one file, meaning

users had to download lots of wasted data.
• Data was stored in ASCII meaning long, slow downloads for some datasets.

Our Data Frames architecture:

W`/
Input files are fed into processing

task

Data Frames are processed asynchronously, meaning they can be offloaded to a
collection of worker nodes. Users can watch for their processing task to be finished in the
user interface:

Data Frame
Groups

Data Frarne Group

Current Group
• last Lpf,a;ed: 2019-09-05T16:17:48.062.7

• state: COMPLETE

• processor: TDrvIS

Data Frames

DataFra me Dynamic Block_LR_Probe_ Download —1

DataFra me Dynamic Front_Mic_ Download

DataFra me _Dynamic Fuel_Purnp_ Download 4

> DataFra me _Dynamic Time_ Download

> DataFra me _Dynamic Turbo_Mic_ Download

+1% DataFra me _Dynamic Engine_Tach_ Download

DataFra me _Dynamic Turbo_Tach_ Download

_ _

> DataFra me _Dynamic Turbc_Laser Download

Data Frame Groups are a
collection of Data Frames.
Data Frame Groups are
attached to records

The processor used
to extract data from
the input files.

The user can
download individual
frames of data
(typically channels)

Users can expand
these panels to view
metadata for the
channel.

• Is compatible with modern tools like Python and MATLAB
• Uses binary formats for efficiently transferring data.
• Enables users to only pull data relevant to them.

JSON Metadata
(Stored in database)

/

Parquet-Avro Files
(Stored in storage system,

Linked to metadata)

File

Magic Number (4 bytes): 'PAR1"

Row group 0

Column a

Page 0

Page header (Thriftcornpactprotocol)

Repetition levels

Definition levels

values

[_____j
Facie I __---

___ 
----

Col urnn b

-._

'

Row group 1

Parquet has its own
representation it stores in disk

Customers and developers can create processing tasks,
isolated units managed by the Citadel application that
responsible for translating a customer data format into
Parquet-Avro. The Citadel application sandboxes the
processing task, allowing it to run with the specific set of
dependencies needed for the data.

Processing tasks produce Data Frame Groups, which are a
collection of Data Frames. Each Data Frame is a table of
data. For data sources capturing many channels of data
from an experiment, each channel can be its own Data
Frame.

The system records the exact task used to process a set of
input data. When coupled with good code management
processes allows exact knowledge of what code was used
to transform data.

Footer

FileMetaData (ThriftCompactlprotoca)

- Version (of The lorrnat}
- Schema
- extra keyNalue pairs

Row group 0 rneta data:

Column a meta data:
- type / path I encodings 1 codec
- num values
- offset of first data page
- ofIset of first index page
- compressed/uncompressed size
- extra key/value pairs

column "b" meta data _ 
_..
._._.

.

_ Row group 1 meta data 1

Footer length (4 bytes}

Magic Number (4 bytes)] 'PAR1"

Parquet is columnar data storage
format. It stores tables of data,
but stores them on disk by
column (rather than by row). By
storing them by column, many
operations on series of data are
much more efficient.

Parquet is a binary format,
meaning it can efficiently store
numeric values.

We use Parquet-Avro, because
Avro is a self-describing format
for the contents of the Parquet
file, making it self contained.

Object model converters
transform parquet data into

a user friendly format

We use Avro, because
Avro is self-describing.

&Eli&
A .V e+V14
/ V L7 ‘ZIo-st-A
National Nuclear Security Administration

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &

Engineering Solutions of Sandia, LLC,

a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National

Nuclear Security Administration under contract DE-NA0003525.

SAND No.

Unclassified Unlimited Release

Sandia
National
Laboratories

SAND2019-10881C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.


