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2 I Outline

• SPARC Development and v&v Progress
• Fluids

• Ablation

• Next year's effort: "Virtual Flight Test"

• Sneak Peeks:

• Materials Testing and Modeling at Sandia

• Mesoscale Modeling at Sandia
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3 I Sandia Parallel Aerodynamics and Reentry Code (SPARC)

SPARC is an aero-ablation code targeting reentry

problems.

Consists of:

• Finite-rate compressible Navier-Stokes solver

• 3D Material thermal response solver

• Interfaces to other libraries

Quantities of Interest:
• Aerodynamic forces and moments

• Heat transfer

• Material thermal/structural response

Critical features:

• Development prioritizes scalability and

portability

• Supports multiple discretizations
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5 I Previously... at Ablation Workshop 2016

SPARC vs. US3D
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6 Since...

Development for fluid solver:

Reacting gas models

• SA and SST RANS models (both perfect
and RG), WMLES

• Periodic, farfield, subsonic BCs

• Refactored input parser — YAML,
informative error checking, standalone
validation

• Greatly expanded surface/volume
postprocessing capabilities

• HOFD/DG numerics

v&V- Efforts for both fluid and ablation
solvers

DNS of Hypersonic Transitional Boundary Layer, -2.7B Cells
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7 I Fluids Validation Work
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8 Fluids Validation Work

Rigorous analysis including:
• Sensitivity analysis

• Forward UQ

• Bayesian Calibration

Several conference and journal
articles covering this work
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9 I Ablation Model Development: Monolithic Solve

SPARC solves set of 3 equations
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10 I Ablation Model Development: Monolithic Solve

We are undertaking a monolithic approach to the

system, solving them all simultaneously

This should make the solution more stable and

The remainder of the Jacobian entries must be
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I11 Ablation Model Development: Monolithic Solve

We are undertaking a monolithic approach to the equation

system, solving them all simultaneously

This should make the solution more stable and accurate

The remainder of the Jacobian entries must be calculated
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12 I Ablation Model Development: Monolithic Solve

Workshop #5, problem 2.2

• 1-D decomposing ablator (TACOT) subject to

a constant BC (turns off at 60 sec)

• In-depth equations show improvement

• Investigating other sources of inconsistency

with Chaleur

• Work is ongoing
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13 I Ablation Validation Effort:Arcjet Cases

Goal:

Validate both decomposing and nondecomposing ablation models

experimental data from arcjets.

o Can SPARC reproduce experimental data, conditional on unceri

o Can we assess the model-form errors?

Steps:

G Identify influential SPARC inputs 75 for each of the experimental observables

o Model 75> as uncertain (random) variables and predict the experimental data

o Infer 75 from experimental data and assess how plausible it is

Identifying influential SPARC inputs

o Model all 17 SPARC inputs (fi) as uniform distributions (+20% variation about
mean/nominal value)

O Using 2500 samples in 17-dimensional space, compute thermocouple, recession

and pyrometer readings at 2 time-instants

Compute correlation between predictions and elements of (73)

lso this past year...

Q* ablation model in both 1D and 3D

Code comparison work for carbon phenolics

Coupled solve simulation hardening

0 Some flight test validation

More...
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14 Next Year's Effort: "Virtual Flight Test"

• The physics are coupled: fluid,

ablation, material response, and

traj ectory

• Historically, we have uncoupled

them and attempted to correct
using engineering assumptions

• Legacy approach is not viable

for some classes of problems
• Always striving to reduce

assumptions and increase

predictive power

Now:Sequence of steady RANS snapshots along a trajectory
Next : Unsteady full-trajectory analysis with WMLES
Impact: prediction of reentry random vibrational loading

Now: correlation based transition
prediction
Next: in-situ transition methods

Now: 1-way couplings
Next: 2-way 6 DOF, thermal a
structural coupling
Impact: more accurate prediction
of flight dynamics, recession,
heating and vibrational loading

(Now: No wake flow
Next: Full wake flow
Impact:

prediction of base pressure and
heating fluctuations

Now: formal vav
Next: formal and embedded VEtV/UQ

Now: 100-ish M cell grids
Next: 5-ish B cell grids

Now: Petascale, Xeon-based HPCs
Next: Exascale, ???-based HPCs

Now: 2nd-order FV scheme
Next:

a) high-res, low-diss. FV scheme
- and/or -
b) high-order FD or DG scheme
Impact: numerical schemes
appropriate for unsteady turbulent
flows



15 SPARC Virtual Flight Test Requirements

RANS snapshots HRLES snapshots

(I nwer fidelity)
.71

Time accurate HRLES

 ► Fidelity hesed on customer/program rermirements 1--J

WRLES >(Higher fidelity)

• -100-500 M cells
• >10 TB RAM
■ 1000's of snapshots

• -5-25 B cells
• >500 TB RAM
• 20's of snapshots

• Implicit, steady-state
■ 2nd-order hybrid FV scheme
■ Continuation solvers
■ Tridiag solver &

GMRES/Multigrid solver

■ Ablation/structural one-way
coupling
■ 6 DOF trajectory coupling
■ Mesh refinement
■ Parameter UQ

■ Scalable solvers
• Performance portability
■ Embedded analvsis 
(meshing

• V&V
Legacy/Current

Capability

■ -5-25 B cells
• >500 TB RAM
■ 5 full simulations

Implicit or IMEX, time accurate
High-res, low-order FV scheme -or-
high-order entropy-stable FD/FE
Jacobi & SGS solvers &
GMRES/ILU(0)

Ablation/structural coupling
6 DOF trajectory coupling
Mesh refinement
Parameter UQ & In-situ viz

Scalable solvers
Performance portability
Embedded analysis
Discretizations
AMT & DataWarehouse
V&V

• -50-100 B cells
• >2 PB RAM
• 1 or 2 time windows

• IMEX or explicit,
time accurate

• HR, LO FV scheme -or-
high-order ES FD/FE

• Jacobi & SGS

• Mesh refinement
• In-situ viz

• Performance portability
• Discretizations
• AMT & DataWarehouse
• V&V

FY20 Target



Sneak Peeks:Work at Sandia
Impacting Macroscale Modeling



17 Understanding Materials Under Extreme Environments

Thermal Protection System (TPS)
materials must withstand extreme

environments

NASA-S-66-11003

ENTRY INTO EARTH ATMOSPHERE
•

NASA: "Project Fire Redux: Interplanetary Reentery Test (1966)
https://www.wired.com/2012/07/interplanetary-reentry-tests-1966/

How do we quickly improve our
understanding of materials used?

2-fold: computation Et performance
characterization.

1966 FIRE REUDUX NASA: Complex problem "no
substitute for testing specific configurations and
materials in the actual environment of interest"

Goal: manufacture materials Et improve our understanding of properties
under extreme environments through modeling efforts

Models are using data from
materials science Et environmental

performance to improve our
understanding

Materials
Spec Sheet +

Material
performance
+ modeling
creditability
+ System

performance

System
performance
predictions

Modeling
Material

Characterization

Materials
Spec Sheet +

Material
performance
+ modeling
creditability

UQ/V&V

Materials
Spec Sheet

Material

Performance
modeling

Material
performance

testing

The power of the Sun is used
to simulate reentry heating

to verify performance
behavior

High Temperature Testing

*One of several Sandia
testing facilities

available to simulate
extreme environments



1 8 I Mesoscale materials and ablation modeling

Geometry

(SNL, NASA)

Analytical + Image-based

Constituent properties
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Microscale + constituent measurements
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Mesoscale modeling systematically bridges fundamental constituent behavior and macroscale response
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