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Hydrogen Materials Compatibility Consortium:

Science-based advancement of materials
for hydrogen technologies
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H-Mat addresses the challenges of
hydrogen degradation by elucidating
the mechanisms of hydrogen-
materials interactions with the goal of
providing science-based strategies to
design materials (micro)structures
and morphology with improved
resistance to hydrogen degradation.

Six new projects with universities
and industry currently being
negotiated with DOE for inclusion
under the H-Mat umbrella
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H-Mat approach: integrate innovative computational
& experimental activities across length scales
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Microstructural and environmental variables are
considered in this study  

Microstructural variables
Composition

304L — 316L (nickel)
XM-11 (nickel-manganese)

Alloy stability
Metastable (304L, 316L)
Stable (XM-11)

Strength
Forged — Annealed (XM-11

Environmental variables
Hydrogen concentration
0 to 140 wt ppm H (to 220 wt ppm H in XM-11)

Temperature
Room temperature (293 K) and low temperature (223K)

Hydrogen embrittlement occurs in
materials under the influence of

stress in hydrogen environments

/
aterials
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Stress /
Mechanics
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Austenitic stainless steels in this study

Designation Fe Cr Ni Mn Mo Si C N S P

304L - F Bal 19.6 10.6 1.6 0.65 0.028 0.04 0.0042 0.02

316L - F Bal 16.7 12.7 0.64 2.8 0.62 0.020 0.04 0.0023 0.008

XM-11 - F Bal 21.1 7.2 9.1 0.53 0.031 0.28 0.001 0.015

XM-11 -A Bal 19.3 6.8 9.0 0.39 0.022 0.25 <0.001 0.017

F= forged; A = annealed

Designation
Yield

Strength
(MPa)

Tensile
Strength
(MPa)

Elongation
(0/)

Reduction
of Area (%)

304L - F Metastable 436 611 69 85

316L - F Metastable 422 571 70 84

XM-11 - F Stable 674 830 48 76

XM-11 - A Stable 457 755 65 83
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H-precharging is used to simulate hydrogen
service environment

• Thermal H-precharging

- Exposure to gaseous hydrogen until
specimen is saturated with hydrogen
- Pressure: varied to achieve target [H]
(up to 138 MPa)

- Temperature: 300°C

• Testing in air after precharging with hydrogen

• Mechanical testing in H-precharged condition (internal H) is
similar to in situ testing in high-pressure gaseous hydrogen
(external H) for tension, fatigue and fracture

• Conditions simulate the high concentration anticipated under
high triaxial stress (i.e., near crack tip) in gaseous hydrogen
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Tensile stress-strain curves show similar behavior
for all materials in general
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Elongation
• Type 304L shows the

lowest elongation to
failure

• Low temperature has the
greatest effect on tensile
elongation of 304L

Strength
• Temperature seems to

have a greater effect on
strength properties of
XM-11 compared to 304L
and 316L

• In general, temperature
strengthens austenitic
stainless steels
— Exception: Type 304L

Engineering Strain Engineering Strain
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Tensile stress response roughly scales with
hydrogen concentration for type 304L
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• Hydrogen acts similar to a solid-solution strengthening element
• Hydrogen substantially reduces tensile ductility in 304L

- At low temperature, reduction of ductility results in
decreased tensile strength
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Tensile stress response roughly scales with
hydrogen concentration for type 316L
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• Hydrogen acts similar to a solid-solution strengthening element
• Hydrogen has modest effect on tensile ductility

- At low temperature, tensile ductility remains high and tensile
strength with hydrogen is greater than without hydrogen



Sandia National Laboratories

Yield strength increases approximately linearly with
hydrogen concentration for types 304L & 316L
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increases at low temperature

• Effect of hydrogen concentration, however, remains constant
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Compositional effects are not straight forward when
both stable and metastable alloys are considered

All materials show a
substantial loss of ductility
with high concentration of
hydrogen

H-precharging reveals that
even high-Ni 316L shows
substantial loss of ductility

Metastable 304L and stable
XM-11 show similar loss of
ductility

Despite much lower nickel
content of XM-11
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Ductility loss is nominally a linear function of
hydrogen concentration for type 304L & 316L
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`Offset' of ductility with
hydrogen depends on
composition and temperature
(i.e., extrapolated value of RA)

Dependence on hydrogen
concentration Cslopel is similar
for type 304L at both
temperatures and type 316L at
room temperature

Slope of ductility loss with
hydrogen concentration is
significantly greater for type
316L at low temperature

Results suggest that high-Ni
316L is not as resistant to
hydrogen as generally
assumed
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Strain-induced a'-martensite transformation in metastable
austenitic stainless steels depends on composition
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mit
Strain-induced a'-martensite transformation in 304L
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Strain-induced a'-martensite transformation in 304L
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At low volume of transformation, hydrogen
promotes strain-induced transformation
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Strain-induced a'-martensite transform-ation in 304L
ay
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At high volume of transformation, hydrogen
suppresses strain-induced transformation
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Strain-induced a'-martensite transformation in 316L
a'

-m
ar

te
ns

it
e 
(
m
a
s
s
 %
)
 

80

E OH (RT)

70 • 50H (RT)
• 100H (RT)
• 140H (RT)

60 A OFI (-50C)
A 20H (-50C)

50
A 50H (-50C)
A 100H (-50C)
A 140H (-50C)

40

30

20 ,AAAt
10

o ,,, 
1-1

- - -
0 0.1 0.2 0.3 0.4 0.5 0.(

Engineering strain

a'
-m

ar
te

ns
it

e 
(
m
a
s
s
 %
)
 

20

18

16

14

12

10

2

1

0

AA A-
A A .

A P -

A

L

• •

0 0.1 0.2 0.3 0.4 0.5 0.6

Engineering strain



Sandia National Laboratories

Strain-induced a'-martensite transformation in 316L
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Ductility loss in austenitic stainless steels with internal
hydrogen does NOT correlate with a'-martensite

1

0.8

0.2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I 1 1 1 1 1

A non-charged

A

H-precharged

AA

...I... 1

7

A
A

_1
co
c7

0 • 293K
A A 223K

8 9 10 11 12 13 14

3% a _

martensite

14% a'-martensite

11% a'-martensite

Ni content (wt%)



Sandia National Laboratories

Ductility loss in austenitic stainless steels with internal
hydrogen does NOT correlate with a'-martensite
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Low ductility with hydrogen is
observed in both stable and
metastable alloys

Moderate ductility with hydrogen
is observed with both low and
high martensite transformation

• Promotion of martensite
formation at low martensite
content is likely related to
greater nucleation sites due to
hydrogen-promoted planar slip

• Suppression of martensite
formation at high martensite
content is likely related to
stabilization of austenite by
interstitial hydrogen
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Summary and conclusions
Internal H strenqthens allovs approximatelv linearlv with
hydrogen content

Internal H reduces tensile ductility

Temperature reduces RA by about the same amount for all alloys

Internal H promotes strain-induced oe-martensite
when volume of martensite is small (<20%)

Internal H suppresses strain-induced oe-martensite
when volume of martensite is large (>20%)

No apparent correlation between oe-martensite and ductility
with internal H

• Hydrogen has strong effects on ductility of all stainless steels
(which are not always captured by tests in external H)
• Hydrogen-assisted fracture cannot be understood by
hydrogen-induced fracture of strain-induced martensite


