Sandia National Laboratories

Citadel: Dynamic Records

Malachi Tolman

Citadel is a custom code framework designed to quickly roll out multiple data storage applications at Sandia National Laboratories. Citadel
helps projects by providing features common to all data system applications. These include: enabling CRUD operations, tracking changes
to the data (via a user accessible provenance database), parsing common data types into Parquet files, opening RESTful API’s for third
party tools to interact with the data (see posters on WASP), and establishing custom access controls to data on a granular level.

Currently the two implementations of Citadel are the SEDS and DataSEA projects. SEDS focuses on replacing a large legacy data system. It
has hard-coded data structures and rules for accessing data. DataSEA focuses on quickly rolling out smaller data systems that allow the
users to determine their own data structures and custom rules for storing, accessing, and manipulating data.

Schema A
propl - boolean

prop?2 - string

N

Record C Record D
propl - true propl - false
prop2 — “imaString” prop2 —

After quickly discovering the countless permutations of data
structures that current and future customers will have when
storing data, we sought a flexible solution that would allow a
customer to determine their own data structure before storing
such in the DataSEA system. We accomplished such via record
schemas and dynamic records. Record schemas are json-like
objects that determine the structure of records that can be
associated with it. Once a schema is declared, users then can
create dynamic records based on that schema. In this regard, they
have a consistent set of metadata associated with each set of test
data that logically goes together.

Schemas are made by listing each property that subsequent
records can contain. Each property includes, at least, a property
name and property type. The currently supported property types
are: string, boolean, date, enumeration, file, file with metadata,
float, integer, list, and schema. Optionally, users can add validators
to properties while declaring schemas to enforce certain data
values in subsequent dynamic records. The most common of these
is the “NotNull” validator, enforcing any record made from that
schema to have a value in that metadata field. But others that can
be currently used are max, min, future, past, and pattern (regular
expression for string fields).

— |

Schema B
prop3 - date
prop4 — integer, NotNull

R

Record E
prop3 — “9/24/19”
prop4 - 24

Record F Record G
prop3 —“9/25/19” prop3 —“9/26/19”
prop4 - 25 prop4 -

Users can create record schemas and dynamic records via three
means currently. One being declaratively setting up record
schemas and/or dynamic records via third party tool such as
Matlab or Python and inserting such directly into DataSEA through
our restful API's. The second by using our web interface built on
top of Angular. The third being automatically generating schemas
and records from TDMS files (National Instrument’s/LabVIEW’s
proprietary file structure) using DataSEA’s TDMS parser. This allows
current and future customers to store nearly any data they have in
a manner that is searchable (see poster on Citadel: Search).

The glaring weakness to this approach is that it is not possible to
enforce almost any standards on data structure and best practices.
Some steps are being taken to alleviate such, but this problem is
still being worked on. Another important note is that record
schemas and dynamic records are exclusively for organizing
metadata. Dynamic records can have test data attached to such,
but the actual parsing and organizing of the test data is done via
data frames (see poster on Citadel: Data Frames).

SAND2019- 10869C |

Sandia
National
Laboratories




