Sandia National Laboratories

Citadel: Tracking Data Provenance ana
Synchronizing Across Multiple Instances

Aaron Comen

Citadel is a custom code framework designed to quickly roll out
multiple data storage applications at Sandia National
Laboratories. Citadel helps projects by providing features
common to all data system applications. These include:
enabling CRUD operations, tracking changes to the data (via a
user accessible provenance database), parsing common data
types into Parquet files, opening RESTful API’s for third party
tools to interact with the data (see posters on WASP), and
establishing custom access controls to data on a granular level.

Currently the two implementations of Citadel are the SEDS and
DataSEA projects. SEDS focuses on replacing a large legacy data
system. It has hard-coded data structures and rules for
accessing data. DataSEA focuses on quickly rolling out smaller
data systems that allow the users to determine their own data
structures and custom rules for storing, accessing, and
manipulating data.

Data Provenance

A key feature of these systems is tracking data provenance for
all data stored in the systems. This includes tracking author,
create time, and revision history for all data. To accomplish this
Citadel leverages the graph database Neo4j to store this
provenance information. Citadel stores all data and associated
metadata as records within a MongoDB datastore and assigns
all created records a universally unique revision ID. Records are
immutable and any revision to a record creates a new record in
the database. These records are referenced via these revision
IDs from nodes stored in the graph database which contain
information about the revision such as author and reasoning
for the revision. The edges between these nodes express the
relationship between these records, and can support a
branching structure if needed. Records which are revisions of
each other share a provenance ID.

Using the information in this graph database, citadel can
construct a Directed Acyclic Graph (DAG) representing the
provenance of the data, which allows for easy inspection of
changes to data over time. This DAG is rendered into a graph
which clearly explains this history of the data and allows the
users to see previous revisions, giving end users insight into who
Is changing their data, how it is changing, and why it is changing.

Data Synchronization

Data which is inputted into citadel instances can be produced in
a variety of environments, including standalone environments
running locally on laptops which are not connected to a
network, where the data must later be synchronized to a main
instance running on a server. The history of this data should still
be tracked, and the source of this data should be made clear to
users on the main system. When data is synchronized, all new
records are placed in the datastore using their unique revision
IDs as identifiers. When merging revision histories of data, edits
done on a remote host are represented as a separate branch. If
possible, the branch is merged back into the main branch when
data is synchronized. This creates revision histories which easily
display where data was modified and who modified it.

[Test/master] Created info-acomen 2019/07/08 09:33:03

[Test/master] Added property-acomen 2019/07/09 10:46..

[Test/master] Added another property-acomen 2019/07/..

. [master] Automatically merged-acomen 2019/07/15 09:....

)[master] Reordered-acomen 2019/07/17 10:38:22

R Provenance ID

h)

Sandia
National
Laboratories

