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2 Importance of Flaws in Additive Manufacturing

*Additive manufacturing known to have a variety of
internal flaws

• State of the art equipment and manufacturing processes reduce
these flaws, but they are ever present

• Results in high part rejection and/or avoidance of the
technology

•Need alteration in paradigm: Consider a flaw tolerant
approach

• To do so we need to understand what type of flaw needs to be
rejected

• Potential Rejection Parameters
• Flaw Size

• Flaw Shape

• Flaw Density/Proximity

• Flaw Location

• Use non-destructive testing to detect the critical flaw
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3 I Study Approach: Inclusion of Intentional Flaws

• Design an exemplar component with
known failure region

• Add large geometrical flaws which will
dominate over uncontrolled flaws

•Observe in two AM materials

• Ductile 316L Stainless Steel

• Brittle A1Si10Mg (As-Printed)



4 Material Characterization

• Need baseline material characterization
before inclusion of flaws

• Testing on coupons adjacent to exemplar
components on the build plate

• Experiments included:
• Tensile testing

• Compression testing

• Fracture toughness

• Charpy impact testing

• Computed Tomography (CT)

• Metallurgy/EBSD

• Archimedes Density
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5 Stainless Steel 3I6L - Geometric Flaw Dependence

• Ductility qualitatively follows area

• Fractography observes ductile dimples

• Significant strain hardening

• Pop-in event from quarter crack rupture

Geometric Area Peak Load Max Disp.
Feature (oh) (%) (%)

Pristine 100.0 100 100

lnternalVoid 99.6 100 94

Through Hole 96.1 89 75

Quarter Crack 75.0 73 73
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I6 AISi I 0Mg - Geometric Flaw Dependence

• No signs of ductile dimples

• Minimal strain hardening

• Adding a flaw (regardless of area)
significantly weakens the part

Geometric Area Peak Load Max Disp.
Feature e/o) elo) (%)

Pristine 100.0 100 100

internal Void 99.6 77 47

Through Hole 96.1 56 23

Quarter Crack 75.0 67 38
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7 Stress-Relief Annealing of AlSi I 0Mg

• Stress-relief annealing heat treatment breaks
down silicon cellular network, increases
ductility

• Material behavior transitions from brittle to
ductile

• Flaw dependence begins to transition from
geometry to cross-sectional area dependent
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8 Bulk Porosity in Exemplar Components

• Build parameters have large effect on bulk
porosity

• Observe two build plates of AlSi10Mg

• Recommended power condition

• Reduced power condition (50% of
recommended power)

• High sample porosity will dominate over a
single, large, geometrical flaw
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9 Bulk Porosity Effect on Mechanical Properties
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• Porosity increase due to powder re-use in
subsequent build plates

• Strongest correlation: Ductility and
Porosity

5
Strain ( /0)

6 7

— Build A

— Build B

— Build C

— Build D
— Build E

— Build F

— Build G

— Build H

9 10

10

9

8

Z-• 6

L1 5

O Build A
* Build B
• Build C
x Build D
o Build E

Build F

✓ Build G

* Build H

y - -120.8x + 8.435, R2 = 0.794
- - - co = 9.58, n = 23.96

2  
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Volume Porosity



io Reduction of Necking

• As part density decreases, ratio of uniform
elongation to ductility approaches 1
• Indicates no necking of parts

• Attributed to transition in failure type from void
nucleation, coalescence, and growth to coalescence
of small voids
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Conclusions

1. Inherent material ductility matters to flaw sensitivity in AM parts

1. Ductile materials show dependence on area

2. Brittle materials show a dependence on flaw shape (stress concentration)

2. A high concentration of small pores can dominate behavior over a single, large
flaw

3. Ductility and failure type can be predicted by the porosity levels
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