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Importance of Flaws in Additive Manufacturing
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*Need alteration in paradigm: Consider a flaw tolerant
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* To do so we need to understand what type of flaw needs to be
rejected
* Potential Rejection Parameters
* Flaw Size
* Flaw Shape
¢ Flaw Density/Proximity

* Flaw Location

* Use non-destructive testing to detect the critical flaw




Study Approach: Inclusion of Intentional Flaws
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4+ | Material Characterization

* Need baseline material characterization
before inclusion of flaws

* Testing on coupons adjacent to exemplar
components on the build plate

* Experiments included:
* Tensile testing
* Compression testing

* Fracture toughness

* Charpy impact testing

* Computed Tomography (CT)
* Metallurgy/EBSD

* Archimedes Density
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Stainless Steel 316L - Geometric Flaw Dependence

* Ductility qualitatively follows area
* Fractography observes ductile dimples
* Significant strain hardening

* Pop-1n event from quarter crack rupture

Geometric Area | Peak Load | Max Disp.
Feature (%) (%) (%)

Pristine 100.0 100 100
Internal Void 99.6 100 94
Through Hole  96.1 89 75
Quarter Crack 75.0 73 73
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AlSilOMg - Geometric Flaw Dependence

* No signs of ductile dimples
* Minimal strain hardening

* Adding a flaw (regardless of area)
significantly weakens the part

Geometric Area | Peak Load | Max Disp.
Feature (%) (%) (%)

Pristine 100.0 100 100
Internal Void 99.6 77 47
Through Hole  96.1 56 23
Quarter Crack 75.0 67 38
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Stress-Relief Annealing of AISil0Mg

* Stress-relief annealing heat treatment breaks
down silicon cellular network, increases

ductility

e Material behavior transitions from brittle to
ductile

* Flaw dependence begins to transition from
geometry to cross-sectional area dependent
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s | Bulk Porosity in Exemplar Components
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Bulk Porosity Effect on Mechanical Properties

* Compare mechanical results to a
known decrease in porosity on tensile

samples off eight AlS110Mg build plates

* Porosity increase due to powder re-use in

subsequent build plates

* Strongest correlation: Ductility and

Porosity
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o I Reduction of Necking

* As part density decreases, ratio of uniform
elongation to ductility approaches 1
* Indicates no necking of parts

* Attributed to transition in failure type from void
nucleation, coalescence, and growth to coalescence
of small voids
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Conclusions
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Inherent material ductility matters to flaw sensitivity in AM parts

Ductile materials show dependence on area

Brittle materials show a dependence on flaw shape (stress concentration)

A high concentration of small pores can dominate behavior over a single, large

flaw

Ductility and failure type can be predicted by the porosity levels
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