
Self assembled growth of epitaxial V quantum dots
Sadhvikas J. Addamane, John L. Reno

Center for Integrated Nanotechnologies, Sandia National Laboratories Albuquerque, NM

U.S. DEPARTMENT OF

EN E RGY
Office of Science

cint.lanl.gov

Introduction
•

Quantum dots (QDs) are semiconductor nanostructures that exhibit
quantum confinement of carriers in all three spatial dimensions,
resulting in atom-like discrete energy states. Specifically, III-V
epitaxial QDs realized by self-assembly have been the subject of
intensive research for several years and have proven to be a versatile
system with various applications including for:

➢ Lasers ➢ Second-harmonic generation ➢ Solar cells etc.

More recently, their use as sources of single and entangled photons
for quantum applications has motivated interest in high-quality
epitaxial growth of these QDs.
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Figure 1: Single QD integrated with Distributed
Bragg Reflectors (DBRs) in a microcavity for a
single photon source. (Wikiwand)

Growth of the QDs shown here is carried out using solid-state
molecular beam epitaxy (MBE). Three different approaches
explored towards realizing high-quality QDs :

➢ Stranski-Krastanov (S-K) growth mode

➢ Local droplet etching (LDE) method

Submonolayer (SML) QDs

are

MBE capabilities at CINT

AlInGaAs MBE growth Si for n-doping and C for p-doping

➢ High purity and high mobility materials

➢ High precision control of thickness and composition
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Results &

➢ Strain between the epitaxial layer (QD) and the substrate drives
3-dimensional island formation. Eg: InAs on GaAs (7.16% mismatch)

➢ QD size, density and consequently emission wavelength can be tuned by
modifying growth conditions. (shown in Fig. 2)

➢ Dimensions: Height - , d8nm Width - SOnm (Fig. 3)

➢ Room-temperature photoluminescence (PL) observed at , d1150nm from
samples capped with GaAs.
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Figure 3: AFM analysis of InAs QDs showing profile and size of
typical QDs

st

➢ Cycled deposition of submonmolayer InAs in a GaAs matrix (2-4ML).

➢ Compared to SK QDs, submonolayer QDs show:

• High areal density -> high probability of carrier capture
• Wider emission wavelength tunability (900-1300nm)
• Lower lindewidth

Figure 5: Schematic showing difference between S-K (left) and SML
(right) QDs

➢ QD formed by etching of substrate to form a nanovoid, followed by
filling.

➢ Dot dimensions (emission wavelength) can be tuned based on growth
conditions and thicknesses. (700 900nm)

➢ Ideal for single photon emitters.

' Gurioli, Massimo, et al. "Droplet epitaxy of semiconductor nanostructures for quantum
photonic devices." Nature materials (2019):
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Figure 2: 1 X 1 pm AFM scans showing ability to tune QD size and
density by modifying growth conditions such as temperature, growth

rate and III-V ratio

3000

2000

1000

0

-1000

PL signature from QDs

1 ' I ' I ' I ' I '

900 1000 1100 1200 1300

Wavelength (nm)

Figure 4: RT PL from capped InAs QDs showing emission around
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Figure 6: Cryogenic PL results from SML QDs (Pump: 500nm)
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Figure 7: Evolution of LDE method (left) 1; AFM analysis of nanovoids
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