This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

QSubmonolayer (SML) QDs /

/

\-

Quantum dots (QDs) are semiconductor nanostructures that exhibit
quantum confinement of carriers 1n all three spatial dimensions,
resulting 1n atom-like discrete energy states. Specifically, III-V
epitaxial QDs realized by self-assembly have been the subject of
intensive research for several years and have proven to be a versatile
system with various applications including for:

> Lasers > Second-harmonic generation > Solar cells etc.

More recently, their use as sources of single and entangled photons
for quantum applications has motivated interest in high-quality
epitaxial growth of these QDs.

» High purity and high mobility materials

» High precision control of thickness and composition
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Introduction

Figure 1. Single QD integrated with Distributed
Bragg Reflectors (DBRs) in a microcavity for a
single photon source. (Wikiwand)

Growth of the QDs shown here 1s carried out using solid-state
molecular beam epitaxy (MBE). Three different approaches are
explored towards realizing high-quality QDs :

» Stranski-Krastanov (S-K) growth mode

» Local droplet etching (LDE) method
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MBE capabilities at CINT
» AllnGaAs MBE growth ; Si for n-doping and C for p-doping
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Results &

» Strain between the epitaxial layer (QD) and the substrate drives
3-dimensional 1sland formation. Eg: InAs on GaAs (7.16% mismatch)

» QD size, density and consequently emission wavelength can be tuned by
modifying growth conditions. (shown 1n Fig. 2)

» Dimensions: Height — ~8nm ; Width — 50nm (Fig. 3)

» Room-temperature photoluminescence (PL) observed at ~1150nm from
samples capped with GaAs.
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Figure 3: AFM analysis of InAs QDs showing profile and size of
typical QDs

» Cycled deposition of submonmolayer InAs in a GaAs matrix (2-4ML).

» Compared to SK QDs, submonolayer QDs show:

* High areal density — high probability of carrier capture
* Wider emission wavelength tunability (900-1300nm)
* Lower lindewidth
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Figure 5: Schematic showing difference between S-K (left) and SML
(right) QDs

» QD formed by etching of substrate to form a nanovoid, followed by
filling.

» Dot dimensions (emission wavelength) can be tuned based on growth
conditions and thicknesses. (700—900nm)

» Ideal for single photon emitters.

1 Gurioli, Massimo, et al. "Droplet epitaxy of semiconductor nanostructures for quantum
photonic devices." Nature materials (2019):
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Figure 2: 1 X 1 yum AFM scans showing ability to tune QD size and
density by modifying growth conditions such as temperature, growth
rate and lll-V ratio
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Figure 4: RT PL from capped InAs QDs showing emission around
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Figure 6: Cryogenic PL results from SML QDs (Pump: 500nm)

a0 100 150 200 250 300 350 400 fm

Spectral Period 0.00 pm Spectral Freq 0.00 Aum
Spectral BMS Ampl. 13.2 nm Tempoaral Freq: 0,00 Hz

15|

10

[ 1
0.0 1: Height 2.0 um 0 2 @ 40 s hm

| P air | Harizontal Dist. | Yertical Dist. | Surface Dist. I Angle | Fimax | Rz | Rz Count | Rims I Fa [Freg cutoff] | Fre

0.096 (pm) -33.863 (nm) 0102... -19.. 31.6... 0.00... 0.000 11.3... 11141 (... 0.
0.103 (pm) -29.973 (om) 0.108 ... -16... 29.4... 0.00... 0.000 10.7... 9.830(nm) O.
i nm 0.000... 00... 000... 000... 0.000 0.00... 0,000 {nm .
Figure 7: Evolution of LDE method (left) '; AFM analysis of nanovoids /
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