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Short-range scattering sources of two-dimensional hole gases™
in undoped Ge/GeSi heterostructures

o B E N

P
7%

2 9 @
’197@@7@1@@’

/4 0\ Yi-Hsin Su?, Yen Chuang?, David Liu', Tzu-Ming Lu?, and Jiun-Yun Li*>~
a_y@ &5 1 Graduate Institute of Electronic Engineering, National Taiwan University, Taipei, Taiwan
\:@‘\A Q/@

2 Sandia National Laboratories, Albuquerque, NM, US

3 Taiwan Semiconductor Research Institute, Hsinchu, Taiwan
National Taiwan University *email: jiunyun@ntu.edu.tw; phone: +886-2-33663700

Introduction

Motivation

* Germanium has recently gained attentions due to its
strong spin-orbit coupling for spintronic applications.

* While most prior studies were done on modulation-doped
Ge/GeS1  heterostructures, only few reports on the
mobility-limiting mechanisms in undoped structures
were reported.

Key Results

* Electrostatics and magneto-transport properties of two-
dimensional hole gases (2DHGs) in undoped Ge/GeSi
heterostructures with different Si1 fractions were
investigated.

* The quantum transport data were correlated with material
properties, such as dislocation densities and oxygen
concentrations.
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Dislocation-induced scattering

*TDDs characterized by planar-view TEM and EPD
experiments increase with the S1 fraction (left).

*For all devices, Ge quantum well layers exceed critical
thickness, which could lead to misfit dislocations (right).

2DHGs in Ge/GeSi Heterostructures

Ge/Ge,_Si_ 2DHG, x = (a) 0.18 (b) 0.28 (¢) 0.36
(d) (e) TEM, AFM image of (¢c) x=0.36
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Undoped Ge/GeSi heterostructures

* Grown by reduced pressure chemical vapor deposition
(RPCVD)

* Ge virtual substrate and GeS1 buffer with different S1 fractions

*TEM (d), AFM (e), SIMS, and RSM to -characterize
heterostructures

Electrostatics & Magneto-transport properties of 2DHGs
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Enhancement-mode Hall bar devices fabricated for low-

temperature mobility measurements (upper figure)

* Electrostatics (lower left):
- Density saturation for all devices - surface tunneling
* Magneto-transport properties (lower right):
- Mobility decreases with the Si fraction = surface roughness
or induced dislocations ?
- Weak density dependence of mobility = ruled out remote
impurity scattering at the oxide interface

Scattering by Oxygen Impurities

L in GeSi barriers
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Oxygen-induced scattering

e SIMS (left) reveals ~10'° cm™ of oxygen impurities in Ge
quantum well layers, of which the concentration increase with
S1 fraction (right) due to stronger S1-O over Ge-O bonding.

* Oxygen-induced structural defects, but not 1onized impurities
are more likely to be responsible for scattering, according to
mobility-limiting estimations.

Shubnikov-de Hass oscillations & extracted Dingle ratios
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Short-range scattering

* Small Dingle ratios (5-14, right) extracted from SdH data
(left) indicates short-range (large-angle) scattering.

* As the S1 fraction increases, the Dingle ratio decreases.

—> short-range scattering getting stronger !

Conclusions

Scattering mechanisms in Ge/GeSi 2DHG

* Weak density-mobility dependence and small Dingle ratios
suggest that the dominant scattering sources are
dislocations and oxygen impurities.
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