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Spiking neuromorphic hardware will have significant,
widespread impact if we can both demonstrate compelling
utility (algorithms), and facilitate usability (software)



3 I 3 types of neuromorphic users
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4 I 3 types of neuromorphic users...

| need to solve a
[vadda yadda yadda...’
algorithm; | heard neu
hardware can do it

Algorithm yadda yadda yadda

Initialize with data

a=fl (start)

b=£f2 (a)

while b !
c=£3 (b)
b=f4 (c)

end

0

Goals for this user:

O Never have to learn anything about
neurons!

O Program like any other machine

0 Take advantage of libraries and
great performance!



5 I 3 types of neuromorphic users...

| have an idea for
programming a neural
algorithm to solve the
first vadda in the
[vadda yadda yadda
algorithm!

Neural algorithm yadda
Initialize neurons

popl = neurons(3)
pop2 = neurons (4)
pop3 = neurons (3)
pop4 = neurons(2)
connl 2 = synapses|(5)
connZ2 3 = synapses|(2)

Goals for this user:

O Can create spiking neural
algorithms!

O Program independently of
underlying hardware

O Create libraries for first set of
users.



6 | 3 types of neuromorphic users...

| know how to tailor the
hardware platform to

enable sparse synapses

to be more efficiently
accessed for yadd

Module neuralCore (pop, syn)
for n in core
neuron (n) .v=pop (n) .v_ini
neuron (n) .v_t=pop(n).v_t
for s in core
synapse (s) .w=syn(s) .w
synapse (s) .source=syn (s)
synapse (s) .targ=syn(s) .t

Goals for this user:

O Can compile algorithms onto
specific hardware platforms

O Interested in optimizing algorithms
for hardware constraints

O Create libraries for first set of
users.




7 I Fugu aims to bring neuromorphic solutions to general computing world

Typical Computer

Scientists Wants to program with libraries

Neural Algorithm

Researcher Wants to program with neurons

Neural
Architecture
Developer

Wants to program hardware directly




Concept and Approach




Spiking neuromorphic hardware will have significant,
widespread impact if we can both demonstrate compelling
utility (algorithms), and facilitate usability (software)



Potential for neuromorphic computing may extend farther than
10 | anticipated
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Ever growing list of reasonable spiking neural algorithms and kernels

Machine Learning
Whetstone
Convolutions

k-Nearest Neighbor

Support Vector Machines

J Many ‘kernels’ used for common neural computation
are important for conventional algorithms as well

) Neural hardware is capable of reasonable
performance on many non-ML kernels as well

J View neural algorithms as composable from linking
together neural circuits to solve broadly useful kernels
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13 I Fugu Overview

Machine Learning Applications | Numerical Computing Applicati
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14 I Fugu Overview - Challenges

O For spiking neural networks, it is (very) hard to
O Implement someone else’s network
d Integrate multiple kernels into an algorithm

d Port networks designed for one platform to another

Algorithm

Insert Brick A, input IN //BA=f, (in)
Insert Brick B, input A //B=f5 (R)
Insert Brick C, input A //C=£.(A)

Insert Brick D, input B, C //D=f,(B, C)

Scaffold Not actual syntax or network
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Fugu Overview - Goals

O Common linking framework for implementing spiking
algorithms
O Leverage and combine community’s recent
progress
O Hardware-independent intermediate representation
O Ability to rapidly change platforms
Q Procedural definition of network connectivity
O Kernels and algorithms can scale according to
problem size
Q Flexible, pre-determined communication methods

O Simple interactivity

Algorithm

Insert Brick A,
Insert Brick B,
Insert Brick C,
Insert Brick D,

input IN
input A
input A
input B, C




16 I Fugu Overview - What Fugu is I:.

« Fugu is a linking framework
 It’s “easy” to build spiking circuits for a single computation
* It’s hard to do application-level computation on neuromorphic

« We provide a mechanism to combine small computational
kernels (Bricks) into large computational graphs

* Fugu is a spec

« For the Bricks to transfer information, we need to agree on
data formatting

« For computation to be consistent, we need to agree on neuron
behavior (lowest common denominator®)

 For this to be useful, we need a hardware independent
intermediate representation

*Usually, for most cases




17 1 Fugu Overview —What Fugu is not

* Fugu includes but is NOT a simulator

« Uses a reference simulator ‘ds’ which can quickly run small-medium
sized spiking networks

 ds instantiates the fugu neuron model (discrete time, point synapses)

« Fugu is designed to support a variety of backends including hardware
platforms

* Fugu includes but is NOT a spiking algorithm
* The goal of Fugu is to have a library of Fugu Bricks for many kernels
« We’re hoping that the community will help contribute

« Fugu includes but is NOT a graph utility
* NetworkX provides (nearly) all of our graph functionality

* Node and edge properties are inherent in NetworkX and only become
meaningful when interpreted by a backend




18 1 Fugu Overview
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Software Design and Organization




20 I Software Design

* Fugu exists!
« Still a work in progress

* We have begun to partner with other Sandia and external laboratory
groups (LLNL and LANL) |

* We will eventually open source and integrate with other tools



21 | Software Design

O Building 3 Computational Example Computational Graph

araph Scaffold ‘
A D\ / c A 4 - Y Y
Q Fugu algorithms are Find a . S : =
s . destination on a 2 O & Sv
deS]gned using map within a ‘ g’ a < g =
. . . ’ © (o]
computational directed vehicle’s range. y = 5 "

. \ y € y 9 J
acyclic graphs
 Nodes — Functions
Q Edges — Data flow |

O Overall Fugu algorithm
Each function within the

graph 2 SCCIffOld Bricks algorithm can be implemented
[ Neural circuits for H by a distinct neural circuit |

functions = Bricks



22 | Software Design

« Key Classes:
+ Scaffold ‘
* Provides the main entry point for people using Fugu

* Manages the computational graph (Scaffold.circuit),
metadata, backend, and network graph (Scaffold.graph)

 Fugu.Scaffold in Fugu.py
* Brick
* Represents a fundamental spiking computational kernel |

 Spiking algorithms should inherit from Brick (or one of its
subclasses); Fugu.Brick is an abstract class

« Responsible for building a portion of the network graph I
e Fugu.Brick in Fugu.py |



23 | Software Design — More about Bricks

O Fugu will contain a growing library of bricks ‘

d Bricks can be linked together to compose bigger
algorithms

O Bricks are individually responsible for
 Building their portion of the graph

O Adapting to a list of acceptable input codings
(unary, binary, temporal, etc) L

O Scaling to the input dimensionality

Q Providing an output in a standard
representation ¥ AR . et

d Incorporating any specialized components
(e.g., learning)




26 I Example of Linking I:.

You can think of the scaffold as linking bricks’ graphs together and those graphs adjust as needed.

' 0000000

g
7100000000




27 I Example of Linking I:.

The scaffold holds references to each brick, ‘lays’ the bricks iteratively, and each brick builds
its portion of the graph when all build conditions are satisfied.

Scaffold.circuit is a
NetworkX Digraph of
subclasses of
Fugu.Brick
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Scaffold.lay bricks()

N " ABrick Build local
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28 1 Software Design — More about backends

O A backend generates platform-
specific code from the platform-
independent network graph
(Scaffold.graph)

d Included in Fugu today is a basic
reference simulator ‘ds’

O The backend handles inputs
(represented by input bricks)

O Hardware platform backends can

be developed by hardware partners

(though we hope to provide a few
as well)
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Some Sample Results
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What the end-to-end Fugu Process looks like
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Questions?




