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Motivation

■ Sparse direct factorization is robust but too expensive in 3D

■ Want robust "black-box" approximate factorization

■ Use as preconditioner

■ Allow trade-off fill versus quality

■ Current methods have limitations

■ AMG and DD are scalable but often not robust (e.g., indefinite, nonsym.)

■ Others (Incomplete factorizations, Sparse approximate inverses etc) are
algebraic (black-box) but not scalable

■ Hierarchical matrix methods could fill this gap

■ Many different algorithms

■ Our focus: SpaND (Sparsified Nested Dissection)

■ Similar to HIF method (Ho & Ying)
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Sparse Factorization (1)
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Sparse Factorization (2)
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Sparse Factorization (3)
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Sparsified Approx. Factorization (1)
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Sparsified Approx. Factorization (2)
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Sparsified Approx. Factorization (3)
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Sparsified Approx. Factorization (4)
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Sparsified Approx. Factorization (5)



Sparsified Approx. Factorization (6)
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SpaND Summary

• Sparsify separators (low-rank compression) during elimination
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Different from fast-algebra on dense

■ Common approach: Fast algebra (H/HSS/BLR) on dense blocks

■ Ex: Strumpack, MUMPS, PasTix, etc.

■ Instead we reduce the size of the separator blocks!
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Sparsification Step

• Block scaling, low-rank elimination, drop negligible blocks
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Sparsification via Low-rank Approx.

We need low-rank approximation of off-diagonal (rectangular) block.

1. Interpolative decomposition (ID)

• Computed via RRQR (QRCP)

• A.k.a. skeletonization

2. Orthogonal transform

• Use RRQR or SVD

• More stable, but may be more expensive

• For both methods there is a user parameter E

• Trade-off accuracy vs cost



Sparsification 1: ID
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Sparsification 2: Orthogonal
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Results: 2D Laplacians
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Results: SuiteSparse Collection

SPD problems from SuiteSparse
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Results: Performance Profile

Interpolative, no scaling
Interpolative, with scaling

SPD problems from SuiteSparse Orthogonal, with scaling
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Results:

Ice-Sheet modeling K(A) > 1011
spaND

tF

(5')

ts

(5')

ncG size Thp memF
(109)

5 layers
629 544 (16 km) 13 3 7 76 0.14

2 521 872 (8 km) 55 20 8 89 0.59

10 096 080 (4 km) 217 115 10 100 2.45

10 layers
1 154 164 (16 km) 39 8 7 136 0.41

4 623 432 (8 km) 148 44 8 148 1.68

18 509 480 (4 km) 798 384 10 159 6.86
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Results: SPE

The SPE problem

N = 7-13
spaND
tF

(s.)

ts
(s.)

I1CG size Top naernp
(109)

Direct.
tF ts

(s.)
128 2 097 152 61 23 12 502 0.63 686
160 4 096 000 175 46 13 634 1.21
200 8 000 000 287 158 16 962 2.54
252 16 003 008 963 369 16 890 5.19
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Top separator block
would be 32 GB without
the sparsification!



Profiling

• Most expensive part is sparsification (RRQR)

• Skip sparsification on bottom levels (no benefit)
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Parallel Approaches

We are exploring two approaches for parallel SpaND:

■ Task-based

■ Dynamic scheduling works well on shared-memory systems

■ Level-based

■ Process level-by-level, going up the tree

■ Need batched BLAS/LAPACK, many small operations in parallel

■ Use Kokkos library to run on both CPU qnd GPU

■ This is work in progress.
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Conclusions

• SpaND is a clever approximate factorization

• combines features from sparse direct and hierarchical matrices

• Tunable trade-off factorization cost and preconditioner quality

• Observed near-linear scaling (total time) on many problems

• Based on HIF but several improvements

• Unstructured, block scaling, orthogonal compression, etc.

• We focused on SPD case (Cholesky) but

• Method can be generalized to nonsymmetric (LU)

• Work in progress
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