This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 10650C

Hierarchical Low-rank Preconditioners and
Solvers for Linear Systems from PDEs

Erik Boman, Sandia National Labs

CIRM, France, Sept. 18, 2019
U.S. DEPARTMENT OF ‘
ENERGY N‘ m Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

M St AGER Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned T
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

LABDRATCRY DRECTE

EARC

Collaborators

= Sandia:

= Siva Rajamanickam, Ray Tuminaro, Ichi Yamazaki
= Stanford:

= Eric Darve, Leopold Cambier

= UT Austin
= Chao Chen, Will Ruys

Motivation

= Sparse direct factorization is robust but too expensive in 3D
= Want robust “black-box” approximate factorization

= Use as preconditioner
= Allow trade-off fill versus quality
= Current methods have limitations

= AMG and DD are scalable but often not robust (e.g., indefinite, nonsym.)

= Others (Incomplete factorizations, Sparse approximate inverses etc) are
algebraic (black-box) but not scalable

= Hierarchical matrix methods could fill this gap
= Many different algorithms

= Our focus: SpaND (Sparsified Nested Dissection)
= Similar to HIF method (Ho & Ying)

Sparse Factorization (1)

m
m

Sparse Factorization (2)

LABCRATCRY O

LABDRATIRY DRECTED RESEARCH B DEVELCFMENT

Sparse Factorization (3)

oD O

ORECTED RESEARCH B DEVELOPMENT

S\parse Factorization (4)

Sparsified Approx. Factorization (1)

* o o o o (o o 8| & (& o & o o =
® 8 @ @ € (& W S € ¥ € © « i .

* e e e & * w O (& @ -ﬁiﬂ—i‘rﬂ

L » L L L L L L 3 L L . . L l L L "’h_&_
* s o o I—l—'~—l—'—‘—|—'—!—T—!

* = ® ® ® =8 ® s ® |8 8 = =2 » l] .\‘H
s = & = = |® .—Q——Q-—H—O—Q—Q—i—i

. T & & & & B & & & & 5 B ’T . .
* o o o o (o o ol o [0 o o o [0 T . .,
* & & & & (& » ¥ « & s o o |# T L]

- 8% 90— 8% »

" & & S 8 & 5 B & & S S8 & & 8

* » & & 8 & B 8 * 8 8 B e

.—t—t—.——b—-ﬂ—.—l——i—-ﬁ—t—i——.—:l:: o . !
* = ® ® = = ® ®© & 8 8 B .—i—i b "‘-: " s " _=

Sparsified Approx. Factorization (2)

W\

iR

Sparsified Approx. Factorization (3)

Sparsified Approx. Factorization (4)

Sparsified Approx. Factorization (5)

R
4

Sparsified Approx. Factorization (6)

SpaND Summary

= Sparsify separators (low-rank compression) during elimination

~

Different from fast-algebra on dense

= Common approach: Fast algebra (H/HSS/BLR) on dense blocks
= Ex: Strumpack, MUMPS, PasTix, etc.

= |nstead we reduce the size of the separator blocks!

LABORATE

Sparsification Step

= Block scaling, low-rank elimination, drop negligible blocks

-
|
I

\

Ass

Asn

11Lss
I
_ I

J

Sparsification via Low-rank Approx.

We need low-rank approximation of off-diagonal (rectangular) block.

1. Interpolative decomposition (ID)
= Computed via RRQR (QRCP)
= A.k.a. skeletonization

2. Orthogonal transform
= Use RRQR or SVD
= More stable, but may be more expensive

= For both methods there is a user parameter ¢

= Trade-off accuracy vs cost

LABORATORY C

Sparsification 1:

(1) We start with
Ass
AWW
Ans Anw

(3) We end up with

Crr Cre
Cc f Acc

1D

(2) We then approximate
T
= (’; ¢) A, + €

s=fUc

ASTI.

LABORATD

Sparsification 2: Orthogonal

(1) We start with
]
AWW
_ATLS A?’LW

(3) We end up with

(2) We then approximate

Asn = Qs Wep, + €
"s=fUc

I Ann
WCTL A'n'w
2 c f‘; ,;5 n f @ . V-

comd @

LABORATCRY OIRECTED RESEARC

Results: 2D Laplacians

Interpolative, no scaling
Interpolative, with scaling
Orthogonal, with scaling

102

CGQG iterations

il i : = 10-1 - 106
:f’% : : :f‘_”_)’_;‘:'__; ,
ol B 2048 3102

n

Results: SuiteSparse Collection

Interpolative, no scaling

: Interpolative, with scaling
SPD problems from SuiteSparse ;.

500

onal, with scaling

100
30 |

10 (] {0 A
ot
500 PULUBAL I AT 0 A

e=10"2

100 |-

e=10"*
&

LABDRATCRY DRECTE

0 REEARC

SPD problems from SuiteSparse

g=10"!

Results: Performance Profile

@

Interpolative, no scaling

E=

05} !

Perf ratio(t) =

Fraction of problems solved

* o
o &

0
cG — 10-4 —1n-6
#[pEP| CG?.”st} e=10 e=10
: E o Bl o i 1 25 BT MRS Al
#P g e e E
E
=
=
g 05
=N
B
5 +-L
L —o
1 2 5 10 1 2 5 10

t, performance ratio

t, performance ratio

Interpolative, with scaling
-Orthogonal, with scaling

S ()

ABORATCRY DIRECTED RESEARCH 6 DEVELCPMENT

Results:

lce-Sheet modeling «(4) > 10"!

lul
000
spaND Direct i] 000
N tp ts nceg Sizerop memr | tp+ts -100
6) () (109 | (s) -
5 layers E
629 544 (16 km) 13 3 7 76 0.14 22 [1
2521872 (8 km) 55 20 8 89 0.59 206 0.1
10096 080 (4 km) | 217 115 10 100 2.45 1578 1
10 layers
1154164 (16 km) | 39 8 7 136 0.41 90
4623432 (8 km) 148 4 8 148 1.68 710
18509480 (4 km) | 798 384 10 159 6.86 —

- O(W)
—e— 10 layers
—e— b layers

tr + ts (s.)

Results: SPE

The SPE problem

spaND Direct.
n N=n3 tp tg ngg Sizery, memp | tp +tg
(s.) (s.) (10%) | (s)
128 2097152 61 23 12 002 0.63 686
160 4096 000 175 46 13 634 1.21 —
200 8000000 287 158 16 962 2.54 —
252 16003008 | 963 369 16 890 9.19 —

Top separator block
would be 32 GB without
the sparsification!

mempg

size Top

Profiling

= Most expensive part is sparsification (RRQR)
= Skip sparsification on bottom levels (no benefit)

300 ™ ; Elimination
| Scaling
. _|Sparsification
& 200 .
g B Merge
S 100 -

0 2 1 6 8 10 12 14 16 18

Level

Parallel Approaches

We are exploring two approaches for parallel SpaND:
= Task-based

= Dynamic scheduling works well on shared-memory systems
= | evel-based

" Process level-by-level, going up the tree
» Need batched BLAS/LAPACK, many small operations in parallel
= Use Kokkos library to run on both CPU gnd GPU

= This is work in progress.

Conclusions

= SpaND is a clever approximate factorization

= combines features from sparse direct and hierarchical matrices

= Tunable trade-off factorization cost and preconditioner quality

= Observed near-linear scaling (total time) on many problems

= Based on HIF but several improvements

= Unstructured, block scaling, orthogonal compression, etc.

= We focused on SPD case (Cholesky) but

= Method can be generalized to nonsymmetric (LU)

= Work in progress

References

= SpaND

= SpaND: An Algebraic Sparsified Nested Dissection Algorithm Using Low-Rank
Approximations, L. Cambier, C. Chen, E.G. Boman, S. Rajamanickam, R.S. Tuminaro, E.
Darve, 2019, under review (on arXiv)

= HIF

= Hierarchical interpolative factorization for elliptic operators: differential equations, K.
Ho and L. Ying, Comm. On Pure and Applied Math., v.69, 2016

