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Motivation

= Sparse direct factorization is robust but too expensive in 3D
= Want robust “black-box” approximate factorization

= Use as preconditioner
= Allow trade-off fill versus quality
= Current methods have limitations

= AMG and DD are scalable but often not robust (e.g., indefinite, nonsym.)

= Others (Incomplete factorizations, Sparse approximate inverses etc) are
algebraic (black-box) but not scalable

= Hierarchical matrix methods could fill this gap
= Many different algorithms

= Our focus: SpaND (Sparsified Nested Dissection)
= Similar to HIF method (Ho & Ying)




Sparse Factorization (1)
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Sparse Factorization (2)
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Sparse Factorization (3)
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S\parse Factorization (4)




Sparsified Approx. Factorization (1)
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Sparsified Approx. Factorization (2)
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Sparsified Approx. Factorization (3)




Sparsified Approx. Factorization (4)




Sparsified Approx. Factorization (5)
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Sparsified Approx. Factorization (6)




SpaND Summary

= Sparsify separators (low-rank compression) during elimination
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Different from fast-algebra on dense

= Common approach: Fast algebra (H/HSS/BLR) on dense blocks
= Ex: Strumpack, MUMPS, PasTix, etc.

= |nstead we reduce the size of the separator blocks!
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Sparsification Step

= Block scaling, low-rank elimination, drop negligible blocks
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Sparsification via Low-rank Approx.

We need low-rank approximation of off-diagonal (rectangular) block.

1. Interpolative decomposition (ID)
= Computed via RRQR (QRCP)
= A.k.a. skeletonization

2. Orthogonal transform
= Use RRQR or SVD
=  More stable, but may be more expensive

= For both methods there is a user parameter ¢

= Trade-off accuracy vs cost
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Sparsification 1:

(1) We start with
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Sparsification 2: Orthogonal
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Results: 2D Laplacians

Interpolative, no scaling
Interpolative, with scaling
Orthogonal, with scaling
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Results: SuiteSparse Collection

Interpolative, no scaling

: Interpolative, with scaling
SPD problems from SuiteSparse ;.
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SPD problems from SuiteSparse

g=10"!

Results: Performance Profile
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Interpolative, no scaling
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Results:

lce-Sheet modeling  «(4) > 10"!
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Results: SPE

The SPE problem

spaND Direct.
n N=n3 tp tg ngg Sizery, memp | tp +tg
(s.) (s.) (10%) | (s)
128 2097152 61 23 12 002 0.63 686
160 4096 000 175 46 13 634 1.21 —
200 8000000 287 158 16 962 2.54 —
252 16003008 | 963 369 16 890 9.19 —

Top separator block
would be 32 GB without
the sparsification!

mempg

size Top




Profiling

= Most expensive part is sparsification (RRQR)
= Skip sparsification on bottom levels (no benefit)
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Parallel Approaches

We are exploring two approaches for parallel SpaND:
= Task-based

= Dynamic scheduling works well on shared-memory systems
= | evel-based

" Process level-by-level, going up the tree
» Need batched BLAS/LAPACK, many small operations in parallel
= Use Kokkos library to run on both CPU gnd GPU

= This is work in progress.




Conclusions

= SpaND is a clever approximate factorization

= combines features from sparse direct and hierarchical matrices

= Tunable trade-off factorization cost and preconditioner quality

= Observed near-linear scaling (total time) on many problems

= Based on HIF but several improvements

= Unstructured, block scaling, orthogonal compression, etc.

= We focused on SPD case (Cholesky) but

= Method can be generalized to nonsymmetric (LU)

= Work in progress
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