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Sputter-deposited reactive multilayers.

Design includes two reactants

Single, out-of-plane periodicity for each
multilayer (called bilayer thickness)

Heats of formation, AH,, for bimetals:
Ti/2B : - 102 kd/mol at.

Al/Pt : - 100 kd/mol at.

Ni/Al : - 60 kd/mol at.

Co/Al : - 58 kd/mol at.

Review articles

1. Rogachev (Russ. Chem. Rev., 2008)

2. Weihs (in Metallic Films for Optical &
Magnetic Applications, 2014)

3. Rossi (J. MEMS, 2007)

4. Adams (Thin Solid Films, 2015)

Al/Pt multilayer in
Cross Section by TEM
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Finite element thermal model simulation of propagating reaction in Al/Pt film
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Why Al/Pt?

Known to have several

exothermic stoichiometries.

Eleven different
thermodynamically stable

phases.

Previous demonstration of
propagating reactions in

equimolar Al/Pt.
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Goals and approach of current study

i)  Determine the reactive range of Al-Pt multilayer stoichiometry which exhibit

self-sustained, formation reactions when ignited at a point

ii) Investigate how ignition requirements vary with multilayer stoichiometry

iii)  Explore how reaction wavefront speeds vary with multilayer stoichiometry.

Product

Depiction in
Ccross section

} Bilayer thickness
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Multilayers have been made with different overall
stoichiometry and periodicity

Equimolar Platinum rich

Bilayer Product
Thickness

1

I Product

Bilayer
Thickness Product Product
2

Stoichiometry varied from 9AI: 1Pt to 1Al:9Pt.
Bilayer thickness varied from 10 nm to 1600 nm.
Total multilayer thickness fixed at 1.6 um.
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Example multilayers in SEM

4Al: 1Pt 1Al: 1Pt 1Al: 4Pt

} Bilayer

1.0 ym

Each has a bilayer thickness of ~400 nm.
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Differential Scanning Calorimetry is used to
generate thermograms for Al/Pt.

 All'AlPt, stoichiometries studied here
1Al1:4Pt

1Al:3Pt
1AlL:2Pt

2Al:3Pt

are characterized by exothermic rxns.

* First exotherms starts at ~100°C.
1Al: 1Pt

3AlL:2Pt

v
v
2Al: 1Pt
3Al: 1Pt

4Al:1Pt

— Separate XRD confirms growth of amorphous
interlayer (a-Al,Pt,) is associated with first broad

exotherm.
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— associated with formation of different crystalline

intermetallic phases (many cases starts with Al,Pt)

Heating rate: 40 degrees / minute
Gaseous environment: N,
Perkin Elmer DSC system
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Differential Scanning Calorimetry is used to
measure heats of reaction for Al,Pt,.

Al Al,Pt, compositions studied
here are characterized by

exothermic reactions.

« Equiatomic AlPt exhibits largest
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Differential Scanning Calorimetry is used to
measure heats of reaction for Al,Pt,.

* AllAl,Pt, compositions studied here
are characterized by exothermic

reactions.

« Equiatomic AlPt exhibits largest
|AH,|.
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A close look at interfaces of a Al/Pt multilayer
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Heats of Formation Derived from measured
Heats of Reaction

a 1ALLIPt
* 3AL2Pt
m 2ALLPt
e 3AL:1Pt
v 4Al: 1Pt

QAL 1Pt
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Thermal Ignition Experiments

« Equilibrate hotplate at known - Multilayer

temperature (in air) ']

=
¥

» Observed during contact to view one $ Ignition

« 1 mm? sample is tossed onto

hotplate to contact on planar face

of two behaviors:
— Ignition (evidenced by bright flash and
burst into microscopic debris.
— No ignition (subtle changes in shape,

slight discoloration due to oxidation) Hotplate at
known temperature

References for method: Fritz et al., 2013 J. Appl. Phys.



Ignition Temperatures vary with Bilayer Thickness
and Stoichiometry

A 1AlL1Pt
& 2AL13Pt
O 1AL:2Pt
O 1AL3Pt
v 1AL:4Pt
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 Ignition temperature increases with bilayer thickness for each molar ratio.

« Equimolar multilayers exhibit lowest ignition temperatures.



Trends of Ignition Temperature (T;,) vs. Bilayer
Thickness are Consistent with Predicted
Dependencies from Fritz et al.

Analytical expression for Ty, from 450
Fritz et al., 2013 J. Appl. Phys.
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Trends of Ignition Temperature (T;,) vs. Bilayer
Thickness are Consistent with Predicted
Dependencies from Fritz et al.

Analytical expression for Ty, from
Fritz et al., 2013 J. Appl. Phys.

Convective losses
Ea / R E =50.9 kJ/mol.at.
T/g — »\\\\..

Conductive losses ™. °,
E =53.5 kJ/mol.at.
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w = premix thickness
tg = bilayer thickness

AH,, = heat of reaction Activation energies derived from this analytical
R = thermal resistivity

¢ < thidknpss et mlbiayer approach should be associated with the solid state

E_ = activation energy for mixing reactants diffusion of reactants.
N = molar fraction



High Speed Videography of Propagating Wave

Tested as freestanding foils
Point ignition in air
No preheat above room temperature

High speed photo: Go/no go; steady-state speed

Position is plotted versus time to determine speed

Test Chamber
Patm
Phantom
High speed
camera
Al/Pt foil
Chamber =
viewport i
Igniter (25V)

plan view

5 mm

Equiatomic Al/Pt, bilayer thickness: 50 nm

80 us

240 us

400 us

560 us

720 us
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Multilayers having Pt - rich compositions
exhibit self-propagating reactions.

« Equiatomic AlPt exhibits

largest reaction rate.

=
g A 1AIL:1Pt
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. " ; . O 1AIL:2Pt
Pt-rich multilayers exhibit g o 1AL3Pt
_ 2} v 1AL:4Pt
decreased propagation speeds % . < 1AL:9Pt
as %Pt is increased. G 2
* e e
« Traditional bilayer thickness 0 100 200 300 400 500 600 700 80

Bilayer Thickness (nm)

dependence is observed for several

compositions.
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Multilayers having Al - rich compositions
exhibit self-propagating reactions.

« Equiatomic AlPt exhibits

largest reaction rate.
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Summary

» Sputter-deposition provides the necessary control of stoichiometry,
purity and dimension for detailed studies of structure-composition-

property relationships.

* The range of reactive stoichiometry for Al/Pt multilayers is large:

spans at least 20 to 80 at.% Pt.
- Attributed to a substantial heat of formation across molar range.

« Equimolar Al/Pt multilayers exhibit the lowest ignition temperatures
- Attributed to largest heat of reaction.

« Equimolar Al/Pt multilayers exhibit the most rapid propagating reactions
- Attributed to largest heat of reaction and adiabatic temperatures.

* Ignition and self-propagating reaction rates vary with bilayer thickness.
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EXTRA SLIDES



Analytical models predict how propagation speed
Is affected by various multilayer properties.

From Armstrong and KoszykowskKi
assuming no premixing

, 3Aexp (-E/RT, . ) RTZ, A2

_ max
Viiame = 5
0 E(Tmax B To )
A = Arrhenius prefactor E = activation energy for mass diffusion
R = gas constant T ax = Maximum temperature during steady propagation
A = average thermal diffusivity T, = ambient temperature

&’ = Va4 of bilayer thickness
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Analytical models predict how propagation speed
Is affected by various multilayer properties.

From Armstrong and KoszykowskKi
assuming no premixing

, 3Aexp (-E/RT, . ) RTZ, A2
5’2 E(Tmax B To )

Vflame -

T..., varies with composition

A = Arrhenius prefactor E = activation energy for mass diffusion
R = gas constant T ax = Maximum temperature during steady propagation
A = average thermal diffusivity T, = ambient temperature

&’ = Va4 of bilayer thickness
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Analytical models predict how propagation speed
Is affected by various multilayer properties.

From Armstrong and Koszykowski

,  3Aexp (-E/RT.) RT e A2
Viiame ~
5’2 E(Tmax B To )

From Mann, Weihs et al. (1997)
Accounted for premix, and assumed
intermixed region is fully reacted final phase

2 (3 b )Aexp (-E/RT,..)RT2, &)2
3

Vflame -

E(Ta - To )

A = Arrhenius prefactor E = activation energy for mass diffusion

R = gas constant T ax = Maximum temperature during steady propagation
A = average thermal diffusivity T, = ambient temperature

&’ = Va4 of bilayer thickness T, = adiabatic temperature
k,, = Fourier coefficients a,, = Fourier eigenvalues
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Exothermic multilayers are deposited at Sandia
using magnetron DC sputter methods.

Multiple deposition systems
109 - 10-8 Torr base pressure

Ar sputter gas

In-situ quartz crystal monitors

Capabilities:

> 99 % uniformity across 8” area
Sample at 45°C during deposition
Precision of layer thickness:10-15 A

Other:
Adjust film thicknesses to
compensate for densities

Generally, multilayer is peeled off to ‘create’ a foil for testing.



Design of multilayer design that vary
net composition and bilayer thickness.

Aluminum rich

Equiatomic

B_Ilayer Product 7 ‘
Thickness o L
1
bilayer
Bilayer
Thickness [Ribaeiitm Frocuet
5 _

We account for Al and Pt densities in design.
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Most multilayers undergo stable propagation.
A few designs near the limits of stoichiometry
exhibit instabilities.

500 um
All other compositions, | 1 Al: 4 Pt
designs (i.e., bilayer thicknesses) Bilayer thickness = 800 nm

Rogachev predicts unstable modes near concentration
limts
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XRD reveals phase evolution associated with
exotherms in DSC.
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Differential Scanning Calorimetry is used to
measure heats of reaction for Al,Pt,.
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Symbols above dashed line indicate reactivity (i.e., ignition, propagating reaction).
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Differential Scanning Calorimetry is used to
measure heats of reaction for Al,Pt,.
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We turn to measurements of stored chemical
energy for explaining trends in flame speed
with bilayer thickness and composition.

Two anticipated examples shown.

Equiatomic Non-equiatomic
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