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Many reactive multilayers undergo propagating
reactions. Some are stable. Others are unstable.
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Stable propagating reactions:

• Smooth reaction front & uniform wave speed
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Example Systerns:
Al + Pt -> A1Pt + 100 1(.1/rnol.at.
Co + Al -> CoAl + 43 1(.1/rnol.at.

Unstable propagating reactions:

• Nonuniform reaction front & varying wave speed
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Propagating reactions are often affected by
surrounding gaseous environment.
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Additional effects of gaseous environment:

• Increased average speed when reacted in air

- increased spin band nucleation rate (Ni/Ti)

• Expanded range of reactive designs (Ni/Ti, Ti2B)



Question addressed in this study

Building on the idea that a minimum forward heat release rate is
needed for a stable propagating reaction  

Can certain intermetallic reactions be stabilized by prompt
oxidation when tested in air?
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Layered structure and composition profiles are
revealed by SEM and TEM/EDS.

Secondary electron
rnicrograph showing
Sc/Ag rnultilayer in

cross section

(constant tB = 250 nrn)
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Differential Scanning Calorimetry (DSC) was
used to obtain thermograms which ultimately

were used to determine Afirxn•

• All ScAg multilayers were characterized

by multiple exotherms.

• First exotherms starts at —200°C.

— Separate XRD confirms growth of arnorphous

interlayer initially
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Heats of formation are determined from
measured heats of reaction.
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Heats of formation are determined from
measured heats of reaction.
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X-ray diffraction shows evidence of substantial
oxidation of Sc/Ag when reacted in air.
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A question remained: would oxidation occur promptly in a manner that

influences wave stability in this system?



High speed videography of propagating waves
is used to evaluate front morphology and speed.

Tested as freestanding foils

Point ignition in air

No preheat above room temperature

Evaluate front position outside ignition zone

Videographs are obtained in plan view

Phantom
high speed
camera

Position is plotted versus time to determine speed

Hli 'estChamber

Patin or 10-4 Torr

Reactive foil

Protective mount at edges

Cover with tape
'Igniter' is
a focused
laser beam
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Propagating reactions in Sc/Ag multilayers
(20 nm < tB < 100 nm)
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These particular multilayers exhibit self-propagating reactions in air.



Propagating reactions in Sc/Ag multilayers
(100 nm < tB < 200 nm)

Time lapse images in plan view
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These particular multilayers do not exhibit self-propagating reactions in air.



Propagating reactions in Sc/Ag multilayers
tB > 200 nm)

Time lapse images in plan view
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These particular multilayers do not exhibit self-propagating reactions in air.



Wavefront speed varies with bilayer thickness
and gaseous environment.
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Wavefront speed varies with bilayer thickness
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Summary

• Gaseous environment affects the stability of propagating waves in this particular
rare earth — transition metal system (via secondary reaction with air)

• Multilayers composed of Sc/Ag exhibit three unique behaviors when reacted in air

- Unstable (2D spin) intermetallic reaction wave which outpaces oxidation wave (when tB < 100 nm)

- Oscillatory stable + unstable reaction wave (when 100 nm < tB < 200 nm)

- Stable reaction wave when oxidation occurs promptly (when tB > 200 nm)
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Enthalpy-Temperature diagram for equimolar
Sc + Ag-> ScAg and predicted

flame temperatures (Tf) 
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Enthalpy-temperature diagram for equimolar
Sc + Ag-> ScAg with preheating
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Enthalpy-temperature diagram for equimolar

Sc + Ag-> ScAg with preheating
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2D (spin) instability nomenclature
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A few reactive multilayers ignite and undergo
unstable propagating reactions.

Example: Co/A1
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Unstable (2D) reactions exhibit:

• Rough reaction front morphology

• Momentarily-stalled fronts

• Non-uniform velocity
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Ni/Ti exhibits a 2-D spin instability when reacted in
vacuum.

Transverse reaction bands nucleate
at foil edges and, on occasion, at
the point of intersection of colliding
bands.

Transverse band speed exceeds
average propagation speed.

Band widths are similar to those
exhibited by Co/A1 and other systems.
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Bilayer thickness = 473 nm; Total thickness = 5.0 mm
Ti capped (two sides); P = 300 mTorr



Ni/Ti exhibits a 2-D reaction front instability and

undergoes secondary combustion when reacted in air.

• Similar to reactions in vacuum,
reaction bands propagate
transversely.

• A second reaction 'wave appears
behind the intermetallic reaction front.

• Second reaction front is faster along
the edges of foils.

Plan view images

Bilayer thickness = 473 nm; Total thickness = - 5.0 Ilm
Ti capped (two sides); P = 670 mTorr air



Reactive Sc/Ag multilayers having nanometer
periods exhibit low ignition temperatures that

are less than the Tmeit of its constituents.
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Enthalpy-temperature diagram for equimolar
Sc Ag-> ScAg
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