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Many reactive multilayers undergo propagating
reactions. Some are stable. Others are unstable.
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Stable propagating reactions:

» Smooth reaction front & uniform wave speed
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Example Systems:
Al + Pt -> AIPt + 100 kJ/mol.at.
Co + Al -> CoAl + 43 kJ/mol.at.

Unstable propagating reactions:

* Nonuniform reaction front & varying wave speed
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Propagating reactions are often affected by
surrounding gaseous environment.
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Additional effects of gaseous environment:

 Increased average speed when reacted in air

- increased spin band nucleation rate (Ni/T1)

» Expanded range of reactive designs (Ni/Ti, Ti2B)
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Question addressed 1n this study

Building on the idea that a minimum forward heat release rate is
needed for a stable propagating reaction .....

Can certain intermetallic reactions be stabilized by prompt
oxidation when tested in air?
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Layered structure and composition profiles are
revealed by SEM and TEM/EDS.
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Differential Scanning Calorimetry (DSC) was
used to obtain thermograms which ultimately
were used to determine AH,_,.

All ScAg multilayers were characterized 'y
by multiple exotherms. % 30 | = 62.5 nm
) i
) ) tp=41.6 nm
First exotherms starts at ~200°C. 2 10l
u_] |
— Separate XRD confirms growth of amorphous % W
2 0
interlayer initially - : i
Z o0
Additional exotherms 20 b
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-  Formation of Ag,Sc then ScAg Temperature (OC)

Heating rate: 40 degrees / minute
Gaseous environment: N,
Perkin Elmer DSC system



Heats of formation are determined from
measured heats of reaction.

Heat of Reaction, |AH,.,| (kJ/mol.at.)
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X-ray diffraction shows evidence of substantial
oxidation of Sc/Ag when reacted in air.
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A question remained: would oxidation occur promptly in a manner that

influences wave stability in this system?



High speed videography of propagating waves
1s used to evaluate front morphology and speed.

® Test Chamber
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Position is plotted versus time to determine speed



Propagating reactions in Sc/Ag multilayers
(20 nm < t; < 100 nm)

Plot of position versus time (3 multilayers)
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These particular multilayers exhibit self-propagating reactions in air.



Propagating reactions in Sc/Ag multilayers
(100 nm < t; <200 nm)

Time lapse images in plan view
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These particular multilayers do not exhibit self-propagating reactions in air.



Propagating reactions in Sc/Ag multilayers
( tg > 200 nm)

Time lapse images in plan view
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These particular multilayers do not exhibit self-propagating reactions in air.



Wavetront speed varies with bilayer thickness

and gaseous environment.

Wave Speed (m/s)
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» Zero speed means multilayer could not be ignited (multiple attempts).



Wavetront speed varies with bilayer thickness
and gaseous environment.
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Summary

* Gaseous environment affects the stability of propagating waves in this particular
rare earth — transition metal system (via secondary reaction with air)

*  Multilayers composed of Sc/Ag exhibit three unique behaviors when reacted in air

- Unstable (2D spin) intermetallic reaction wave which outpaces oxidation wave (when t; < 100 nm)

- Oscillatory stable + unstable reaction wave (when 100 nm <tz <200 nm)

- Stable reaction wave when oxidation occurs promptly (when t; > 200 nm)
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Enthalpy-Temperature diagram for equimolar
Sc + Ag-> ScAg and predicted
flame temperatures (7))
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Compare with key temperatures:
T, (Ag): 62°C
T, (Sc): 1230°C
T,.. (ScAg): 1155°C



Enthalpy-temperature diagram for equimolar
Sc + Ag-> ScAg with preheating
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Enthalpy-temperature diagram for equimolar
Sc + Ag-> ScAg with preheating
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2D (spin) instability nomenclature
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A few reactive multilayers 1gnite and undergo
unstable propagating reactions.

Example: Co/Al Unstable (2D) reactions exhibit:
* Rough reaction front morphology
Total thickness = 7.5 um * Momentarily-stalled fronts
=8 bt Tested in air, freestanding
E \‘ | * Non-uniform velocity
s 1= Stable
o 4 =
G2 i ¥ Unstable
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Ni/Ti exhibits a 2-D spin instability when reacted in

Transverse reaction bands nucleate
at foil edges and, on occasion, at

the point of intersection of colliding
bands.

vacuuinl.
|

. :

Bilayer thickness = 473 nm; Total thickness =~ 5.0 mm
Ti capped (two sides); P =300 mTorr

Transverse band speed exceeds
average propagation speed.

Band widths are similar to those
exhibited by Co/Al and other systems.

Plan view images 4.0 ms



e Similar to reactions in vacuum,

« A second reaction ‘wave appears

« Second reaction front is faster along

Ni/Ti exhibits a 2-D reaction front instability and
undergoes secondary combustion when reacted in air.

reaction bands propagate
transversely.

behind the intermetallic reaction front.

the edges of foils.

Plan view images

Bilayer thickness = 473 nm; Total thickness = ~ 5.0 um
Ti capped (two sides); P = 670 mTorr air



Reactive Sc/Ag multilayers having nanometer
periods exhibit low 1gnition temperatures that
are less than the 7, ., of its constituents.
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Enthalpy-temperature diagram for equimolar
Sc + Ag-> ScAg
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