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I Crash: failure tracking

Track breach in the aft case, forward case, housing, and outer case

0 if intact by end of simulation

1 if breach detected

Given: material properties, impact angle and speed

Predict: 0 or 1



I Methods?

Latin Hypercube Sampling?

0 As usual, may require millions of samples to compute empirical reliability

Won't give parameter sensitivity directly (without even more samples)

Polynomial Chaos Expansions?

Can't fit a 0-1 surface- inherently discontinuous, will converge poorly

Reliability methods?

Require a continuous function to evaluate- no single NIPP in this problem

GP surrogate will also converge poorly- no global reliability here



I Classification models (probabilistic)

Want probability of failure/success given impact speed and material parameters

We want a model like PCE, linear regression, etc. we can use as a surrogate

m(x, (9) — probability of failure

X = vector of features (Young's modulus, yield stress...)

Theta = model parameters

Bernoulli random variable:

1
1

1
1
-

1
p(ylx, e) = m(x, O)y(1 m(x, 0))1-Y 

p(y — 11x, 0) = m(x, 0) p(y = Olx, 0) = 1 m(x, 0) I

i



I Logistic regression

m(x, 0)
1 ± exp(-0Tx)

1

Calibrating the model: maximum likelihood
N samples of data (x,y), x = features, y = {0,1}

Max L

N

H m (xi , Ori (1

i=1

Tri(xi, OW —Yi
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N

Max / yi log m(xi, 9) + (1 — yi) log(1 — m(xi, 9))
i=i

From wikipedia

6

Gaussian -> Minimize sum-of-squares

Bernoulli -> Maximize "cross-entropy"

Logistic regression is convex -> easy to calibrate



I Logistic regression

Decision problem

o If output is greater than 50%, we call that failure

Alternatively:
o We can pick threshold to avoid false negatives to be conservative

' E.g. if you had 10% chance of having serious illness, you'd want to get it checked out

The decision boundary at probability p is a hyperplane of form:
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I Accuracy metrics: testing the model out

Confusion Matrix Data says it breaches Data says it stays intact

We predict it breaches

We predict it stays intact

True positive (TP)

False negative (FN)

False positive (FP)

True negative (TN)

False negative rate = FN/(FN + TP)

[Accuracy = (TP+TN)/(TP+TN+FP+FNj Risk of falsely saying it'll pass

How well model does overall
False positive rate = FP/(FP + TN)
Risk of falsely saying it'll breach

  We may be okay with with a high FPR
but want an FNR as small as possible



I Logistic regression parameters

Easy to interpret!

) Big parameter values = more important to decision

Small = little influence

Looking for sparse models

i Can add "LASSO" or other compressed sensing
models /regularization

Called "L1 regularization" in machine learning literature

Useful if you don't have a lot of data

Forces less relevant coefficients to zero



I Crash sampling study

Treat velocity and material properties as uniform random variables

For each velocity/material set, sample all angles

200 samples per angle = 1600 samples total

Property

Speed 30-80m/s

Angle

Metals E

Metals
yield

{0,45,90,135,180,225,270,315}
degrees

2%

7%

Metals 2%
Poisson

Note: metals include SS286, SS304, Al,
forward mass, steel

Range

Foam
density

20%

Foam E 2%

Foam
Poisson

2%

Foam 7%
strength

Death
EQPS

25%

Friction 10%



I Logistic classifier

Breach rates observed in data:

Forward case: 725/1600 failed

Aft case: 481/1600 failed

Housing: 423/1600 failed

Outer case: 1372/1600 failed

LOOCV: For each of 1600 samples:

Hold one sample out

Train logistic classifier on the 1599 samples (scikit-learn)

Predict the outcome of the remaining sample (If probability>50% => FAIL)

1
1

I
1

1
i

° Compare to true outcome I



Logistic classifier

Accuracy False negative rate False positive rate

Forward case

Aft case

Housing

Outer case

96.63% 4.55%

95.69% 7.48%

96.19% 8.51%

93.31% 2.33%

2.40%

2.95%

2.12%

32.89%

Notes:
Keep in mind that in the outer case, most of the samples were "FAIL"
Hard for classifiers to balance the cases when the data is skewed towards 1 or 0

Breach rates observed in data:
Forward case: 725/1600 failed
Aft case: 481/1600 failed
Housing: 423/1600 failed
Outer case: 1372/1600 failed



I Artificial neural network

Simple logistic regression:

771(x , 6)

Like a linear model!

1
1 ± exp(-0Tx)

1
1

07 1 x log P (
1 — p
)

i

Can we make it more complicated? Capture more complex behavior?

Yes... very much so

Multiply
by weights

Inputs  .

Logistic function

 ► Output

1
I

I



Artificial neural network

Rectified linear unit (ReLU)

Inputs

• Non-convex, can be tricky to optimize/tune
• Very powerful: more data, can make bigger
• Given enough data/big enough network, will
converge to correct function behavior

, ife0

/4if *vAitli

  )•_ # 4 Logistic function

kWfr A

Output

Mixture of linear and non-linear operations with their own tunable parameters



I Neural network classifier

LOOCV: For each of 1600 samples:
o Hold one sample out

o Train NN classifier on the 1599 samples

Predict the outcome of the remaining sample (If probability>50% => FAIL)

Compare to true outcome

NN details:
Scikit-learn

Set to 3 layers of 10 nodes (did some rough tuning to get this as nearly optimal)

Train with SGD-like algorithm (Adam)

O ReLU hidden units, logistic output



Neural network classifier
Breach rates observed in data:

Forward case: 725/1600 failed
Aft case: 481/1600 failed
Housing: 423/1600 failed
Outer case: 1372/1600 failed

Accuracy False negative rate False positive ra

Forward case

Aft case

Housing

Outer case

96.63% 4.55%

95.69% 7.48%

96.19% 8.51%

93.31% 2.33%

2.40%

2.95%

2.12%

32.89%

NEURAL NETWORK Accuracy False negative rate False positive rate

Forward case

Aft case

Housing

Outer case

97.81% 2.62%

95.75% 6.65%

96.13% 6.38%

94.06% 2.91%

1.83%

3.22%

2.97%

24.12%

NN is generally a little more accurate than logistic, and balances FPR/FNR better



23 Learning Curves for Forward Case Predictions
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NN: Probability of loss of containment

Sample NN over uncertain material properties for a fixed angle and speed

Repeat for all angles, and compute fraction that breach. 10 million samples per
angle.
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25 I PLOC: NN versus the raw data
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Fixed velocity study

Now let's freeze the velocity at 50 m/s, 1600 new samples

Breach rates observed in data:
Forward case: 688/1600 failed
Aft case: 443/1600 failed
Housing: 225/1600 failed
Outer case: 1469/1600 failed

-i - False negative rate False positive ra

Forward case

Aft case

Housing

Outer case

97.00% 1.74%

96.13% 9.48%

97.31% 15.11%

94.69% 0.88%

3.95%

1.73%

0.65%

54.96% (ouch)

NEURAL NETWORK Accuracy False negative rate False positive rate

Forward case

Aft case

Housing

Outer case

97.44% 2.76%

95.50% 8.58%

97.19% 15.11%

95.50% 1.97%

2.41%

2.94%

0.80%

32.82%

NN takes a slight hit in accuracy compared to logistic, but still balances FNR/FPR better



Logistic regression: top 5 linear sensitivities for forward case at 50m/s

Uncertainty Linear sensitivity index (normalized)

EQPS for element death

Foam Poisson ratio

Aluminum Young's modulus

Friction

Steel Young's modulus

-0.46

0.63

0.34

0.33

-0.29



NN:Top 5 Sobol indices of probability for forward case breach at 50m/s

Uncertainty

Angle = 0 degrees

I. ota effects sensitivity index

EQPS for element death

Foam Poisson ratio

Friction

Aluminum Young's modulus

SS304 Young's modulus

0.93

0.03

0.02

0.01

-0 1
Angle = 180 degrees

Uncertaint

EQPS for element death

Foam Poisson ratio

Friction

SS286 Young's modulus

Steel Young's modulus

Total effects sensitivity index

0.90 1
0.19

0.18 1
0.09

0.09 1



Conclusion
SAND2O19-4786, UUR

o With thanks to Andrew Murphy and Jay Dike for model development and expert
elicitation

Logistic regression:

o Pros: easy to interpret, easy to compute

o Cons: not very accurate

Neural network classifier:

o Pros: can be much more accurate, capture complex behavior

o Cons: difficult to optimize, not at all interpretable directly

All:

o Pros: can classify failures using surrogate models on limited data, compute sensitivities, predict
probability of failure

Cons: need to handle probability predictions with care! Analysts need to be reminded of caveats
in these models

Application of these models to compute PLOC from sample data is straightforward



I Future Work

Model Selection and UQ

Use regularization/model selection to improve accuracy

Bayesian treatment to add uncertainty bounds to predictions

Model-form error: use FPR/FNR to estimate error bounds on predicted
PLOC

Adaptive simulations: draw more samples around area where model predicts
failure to improve classifier accuracy

Picking the decision boundary carefully is CRUCIAL for nuclear safety

Ideally want to minimize the false negative rate

0 i.e. make sure we say it's safe if and only if it is actually safe


