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Membrane Commercialization
Proceeding through a start up incubator
within Albuquerque company
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• Nearly 2 years trying to get a materials start-up running (Energy Enablers)
• Energy Enablers negotiated licenses of two membrane products, an cation

and anion exchange membranes.
• In all, 10 formal meetings with VCs.
• VC concerns are:

1. Difficult to compete with large industry
2. Materials company profit margins typically small
3. Small changes in demand of product may lead to dramatic

consequences



Membrane Commercialization

Pacific Northwest
NATIONAL LABORATORY

Mixed acid to
increase
vanadium
solubility
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• PNNL developed chemistries to increase vanadium
concentration, but UET is producing systems

• Looking to couple membrane technology to a system

Material + Integrated System = Promising start up



Table 3 Alkaline stability of different backbone AEMs. 2 IAA Lot vv. e on, b rOI Int

% a orTest condition 
DurationPolymer backbone Cationic Samplegroup name (h) ref

Conc. (M) Temp. (° IEC loss

Aryl ether-free polyaromatics

DAPP 
B1MA A 1 MPP 4 80 1800 30 (a) 94

TMHA TMAC6PP 4 80 2200 <5 (IEC)
Poly(fluorene) TMHA PFBFF 1 80 720 <5 (IEC) 41

BTMA QPAF-TMA 1 80 1000 95 (a)
Ni-catalyzed DMBA QPAF-DMBA 1 80 500 <5 (c) 45

poly(phenylene) TMHA QPAF-4 1 80 1000 <5 (5) 47

Imidazolium PPMB 2 80 168 5 (IEC) 48

TMPA BPN1-100 1 95 1440 8 (IEC) 9,

TMPA m-TPN1 1 95 1440 <5 (IEC)
Acid-catalyzed Piperidinium PTPMQ1 2 90 700 5 (IEC) 58

poly(phenylene) Piperidinium PTPipQ8 2 90 700 70 (IEC)
1

Piperidinium QAPPT 
80 210 5 (IEC) 59

10 80 240 33 (IEC)

Spiro-ionene Spiro-ionene 2 1 80 1896 <5 (IEC) 68
N-spirocyclic

QA
Poly(arylene

Imidazolium HMT-PMPI 10 100 168 <5 (IEC) 76
imidazolium)

Aryl ether-containing polyaromatics
Partially fluorinated

BTMA QPE-bl-9 1 80 500 97 (,) 61

poly(arylene ether)
Poly(arylene ether

BTMA QPAEK-x 4 rt 168 17 (6) 96
ketone)

Poly(arylene ether
BTMA QPE-bl-11 1 60 1000 66 (IEC) 97

sulfone ketone)
B-110-PSU-

BTMA 1 50 6 39 (IEC) 64
Poly(ether sulfone) NMe3-OH

TMHA PES-6-QA 1 60 720 12 (a) 23

Poly(fluorene
lmidazolium AEM 1 60 400 6 (a) 98

sulfone)
Poly(arylene ether

Imidazolium ImPESN-19-22 2 60 600 67 (a) 84
sulfone nitrile)

Multication T2ONC6NC5N 1 80 500 10 (a) 99

Poly(phenylene TMHA 5OPPOC6NC6 1 80 1000 7 (a) 85

oxide) PPO-7bisQPi-
Piperidinium 1 90 192 9 (a) wo

1.7
Pol olefins

Poly(ethylene) Irnidazolium - "

Ranked No#1 in stability among all alkaline membrane developed from a
recent review paper

J. Mater. Chem. A, 6, 15456-15477 (2018)

Membrane Commercialization
Most popular material is our anion exchange membrane
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Recent publication suggests SNL anion exchange membrane has the highest alkaline
stability

That means we can make alkaline
electrochemical devices can now be
further explored.

Possible application area

1) Bipolar membrane dialysis* — Waste water
treatment

2) Alkaline redox flow battery — Energy storage

3) Alkaline membrane fuel cells — Energy
conversion

4) High-temperature membrane fuel cells —
Energy conversion

5) Alkaline based water electrolyzers — Energy
production

6) Metal-air batteries — Energy storage

7) Super capacitors — Energy storage

8) Electrochemical ammonia synthesis — Energy
production



Membrane Commercialization

• High conductivity, durable and high Tg
• "Game changing" application may have been

developed by LANL with high temperature FC
employing SNL anion exchange membrane

• High temperature FC performance no water

LANL and SNL is
currently discussing
a path forward to
package lab IP
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Aqueous Soluble Organic FB
• Slight pivot this year to focus on membranes for ASOFB

than VRFB.
• ASOFB to become commercially viable there is a need for

new materials (electrolyte, membrane, electrochemical
species, etc.).

• Capture multiple applications employing our anion
exchange membrane.
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But....

SNL 3.5 x lower resistance than
Selemion DSV
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Cross-over issues

Fell

2 CI

Target lx1 0-1° cm2/s
SNL 6 x 10-9 cm2/s

Selemion DVS lx10-12 cm2/s



Aqueous Soluble Organic FB Concept
o OH OH

Me3N NMe3
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water channe)\-1/

e water channel

Aziz, M., et al. J. Electrochem. Soc., 165
(5), 2018, A1137-A1139
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Due to bulky
backbone/su bstituents,
large chain to chain
distance = larger
hydrophilic domain
high ion cross over

Less bulky backbone and
backbone attached ionic

group = smaller
hydrophilic domain low

ion cross over

Membrane ASR cm2) Permeability
Fe(CN)6 cm2/s

SPEEK 0.51 5.3 x 10-12

Nafion 0.75 4.5 x 10-9



Aqueous Soluble Organic FB Concept Sandia
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To improve membrane selectivity goal: Crowd the ionic units with non conducting groups
that will sterically block transport of larger ions.
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• US Patent: 10,053,534 Functionalization of Diels Alder Poly(phenylene) polymers
• US Patent: 15/911,641 Halo-Containing Anion Exchange Membranes and Methods Thereof
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This concept of
crowding
substituents
around ionic group
show promising
results thus far.



VRFB Membranes Membrane
Development
• Developing Nafion-like materials by attaching fluorine containing groups.
• One step reaction to attach fluorine.
• Benefit of fluorine: stable and lower water uptake.
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FDAPP
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Submitted paper
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Summary/Conclusions
• Anion exchange membranes have been getting attention

due to good performance and durability.

• Commercialization efforts - partner with LANL to push
system rather than solely materials.

• Anion exchange membranes need to be modified for
improved flow battery performance — have concept show
promise.

• Developing fluorinated poly(phenylene)s for VRFB

Future Tasks
• Membrane commercialization
• Battery testing of new polymer architectures

(Travis/Harry), send to collaborators.
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Thank You to the DOE OE and especially Dr.

Gyuk for his dedication and support to the ES
industry and Sandia's ES Program.

Questions?

chfujim@sandia.gov


