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Introduction

■ Sandia does forensic analysis of legacy, high-consequence
systems

■ e.g. maintaining nuclear weapon control systems

■ Typically decades old with large portions written in assembly

■ Original authors or source code may not be available

■ Our use case: analyze simple systems completely

■ Current tools do not support our architectures nor do they
seem easily adapted
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Motivation

• Need to analyze binaries on proprietary ISAs

• ISAs not supported by existing tools
• No machine-readable specification
• Bad old days: No IEEE-754 floats, no 8-bit bytes

• Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs

• We instead require an adaptable IL

Fun example: cLEMENCy architecture made up for DEFCON had
9-bit bytes, 27-bit words, middle-endian [1]
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Design Goals of QIL o

• Sound analysis of binaries

• Lift binaries into a simple IL amenable to multiple analysis
backends

• Closer to LLVM IR in spirit than, say, Ghidra or angr

• Size of QIL (— 60 instructions) means easy to manipulate,

harder to write

• Balance this by leveraging a Haskell as a macro-assembler for
QIL
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Architectural Overview

M6800

Other ISAs

I
Quameleon
Intermediate
Language

Optimizations for
AnalysiF

/
v

Concrete Execution Engine

Custom Symbolic Execution
Engines

Weakest Precondition

LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation

QIL = Quameleon Intermediate Language
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QIL Types

• Values: bit vectors of arbitrary width

• Locations: where values can be written

• Labels: Start of an instruction

• RAM: Mutable cells of Locations indexed by Values

• JoinPoints: Continuation within a block

• I/0: Like volatile variables

• Blocks: Single-entry, multiple exit
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1. Size of Locations

2. Sequence of allocations (of registers and memories)

3. Sequence of blocks, each binding a label

4. A code entry point
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QIL Programs

A program consists of four sections:

1. Size of Locations

2. Sequence of allocations (of registers and memories)

3. Sequence of blocks, each binding a label

4. A code entry point

Within a block

■ Variables are static single assignment

■ No loops
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Haskell DSL
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Sample M6800

LDA A #14 ; A <- OxE

AND A $40 ; A <- A & f0x40]

We want to match the manual closely

13
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...and Its Corresponding Semantics

AND r 1 -> do

ra <- getRegVal r

op <- loc8ToVal 1 -- Loc. of 8 bits in RAM

rv <- andBit ra op

z <- isZero rv

writeReg r rv

writeCC Zero z -- CC = Condition Code

branch next
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...and Its Corresponding QIL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

code_ptr_size: S16

alloc_part: {

&1 := alloc[S8] // Reg A

&2 := alloc[S8] // Reg B

&3 := alloc[S16] // Reg X

&4 := alloc[S16] // Reg PC

&5 := alloc[S16] // Reg SP

&6 := alloc[S1] // Carry Flag

&7 := alloc[S1] // Overflow Flag

&8 := alloc[S1] // Zero Flag

&9 := alloc[S1] // Negative Flag

&10 := alloc[S1] // Interrupt Flag

&11 := alloc[S1] // HalfCarry Flag

MEM(1) := buildMemory[S16 SS]
}

o

13



...and Its Corresponding QIL (cont.)
16

17

18

code_part: {

@1 := block { }

@2 := registered_block "AND A (DIR8 Ox40)" 2 {

19 %1 := readLoc[S8] &1 // read Register A

20 &12 := MEM(1)[S16].BV[S8](40)

21 %2 := readLoc[S8] &12
22 %3 := AndBit[S8] %1 %2

23 writeLoc[S8] &1 %3 // set Register A

24 branch @1

25 }

26 @3 := registered_block "LDA A (IMM8 14)" 0 {

27 writeLoc[S8] &1 BV[S8](e) // set Register A

28 %1 := IsZero[S8] BV[S8](e)

29 writeLoc[S1] &8 %1 // set Zero Flag

30 branch @2

31 }

32 @4 := block { branch @3 }

33 }

34 entry_point: @4

o
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Current Backends

1. Emulator

2. Bridge to angr

■ angr is a symbolic execution engine primarily for cybersecurity
■ Originally planned to translate from QIL to angr's IR, VEX
■ VEX has byte-centric memory model, different functions for

add32, add16, etc.
■ We needed addition of 96 bit integers
■ Easier to treat QIL as an ISA that angr can execute!
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QIL-QIL Optimizations
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QIL-QIL Optimizations

The goal is to facilitate analysis

■ Constant folding

■ Defunctionalization

■ Dead code elimination

■ lnlining with simple heuristics, e.g.
inline everywhere

Reduce
code size

Simplify
CFG
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Future Work

■ Jump to a Location in memory

■ Use abstract interpretation to find Locations code could jump

■ Formalize QIL and QIL-QIL transformations in Coq

■ Loops with statically-known bounds in blocks

■ Don't need the full sophistication of more richly-featured ILs

■ Plan to open source as much as possible
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Conclusion

• Quameleon is a tool for sound binary analysis in its early

stages

• QIL is a typed, RISC-like IL to specify legacy architectures

• Leverage machine readability with the simplicity of QIL

• Leverage features of Haskell as an assembler for QIL

• Haskell DSL matches the structure of ISA specs

• Prefer the flexibility of few assumptions over efficiency of
powerful model

o
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