
Exceptional service in the national interest C) SandiaNational
Laboratories

r

Quameleon: A Lifter and Intermediate
Language for Binary Analysis

Samuel D. Pollard, Philip Johnson-Freyd, Jon Aytac,
Tristan Duckworth, Michael J. Carson, Geoffrey C. Hulette,

Christopher B. Harrison
September 13, 2019

Midi(INESA
Sandia National Laboratories is a multhnission laboratory rnanaged and operated by National Technology & Engineering
Solutlons ot Sandia, LLC, a wholly owned subsidiary ot Honeywell International Inc, for the U.S. Department of Energy's

National Nuclear Security Administration under contract DE-NA0003525. SAND No. ZZ7,7777ZZ-ZZZZ

SAND2019-10608C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

About Us

■ About me: Ph.D. candidate at the
University of Oregon, summer

intern at Sandia National Labs

o

UNIVERSITY OF

OREGON
Digital
Foundations
& Maths

2

About Us

• About me: Ph.D. candidate at the
University of Oregon, summer
intern at Sandia National Labs

• The other six authors work at
Sandia with some portion of their
time spent on Quameleon

o

UNIVERSITY OF

OREGON
Digital
Foundations
& Maths

2

Introduction

■ Sandia does forensic analysis of legacy, high-consequence
systems

3

Introduction

■ Sandia does forensic analysis of legacy, high-consequence
systems

■ e.g. maintaining nuclear weapon control systems

3

Introduction

■ Sandia does forensic analysis of legacy, high-consequence
systems

■ e.g. maintaining nuclear weapon control systems

■ Typically decades old with large portions written in assembly

3

Introduction

■ Sandia does forensic analysis of legacy, high-consequence
systems

■ e.g. maintaining nuclear weapon control systems

■ Typically decades old with large portions written in assembly

■ Original authors or source code may not be available

3

Introduction

■ Sandia does forensic analysis of legacy, high-consequence
systems

■ e.g. maintaining nuclear weapon control systems

■ Typically decades old with large portions written in assembly

■ Original authors or source code may not be available

■ Current tools do not support our architectures nor do they
seem easily adapted

3

Introduction

■ Sandia does forensic analysis of legacy, high-consequence
systems

■ e.g. maintaining nuclear weapon control systems

■ Typically decades old with large portions written in assembly

■ Original authors or source code may not be available

■ Our use case: analyze simple systems completely

■ Current tools do not support our architectures nor do they
seem easily adapted

3

H istory

• Prior work consisted of one-off Haskell programs for a single
ISA and single binary

o

4

H istory

• Prior work consisted of one-off Haskell programs for a single
ISA and single binary

• Successful but not scalable

o

4

H istory

• Prior work consisted of one-off Haskell programs for a single
ISA and single binary

• Successful but not scalable

• Rewrite started as a summer project with M6800

o

4

H istory

• Prior work consisted of one-off Haskell programs for a single
ISA and single binary

• Successful but not scalable

• Rewrite started as a summer project with M6800

• Has since expanded to a small team working on Quameleon

(the other six authors)

o

4

H istory

■ Prior work consisted of one-off Haskell programs for a single
ISA and single binary

■ Successful but not scalable

■ Rewrite started as a summer project with M6800

■ Has since expanded to a small team working on Quameleon

(the other six authors)

4

Motivation

■ Need to analyze binaries on proprietary ISAs

o

5

Motivation

■ Need to analyze binaries on proprietary ISAs
■ ISAs not supported by existing tools
■ No machine-readable specification
■ Bad old days: No IEEE-754 floats, no 8-bit bytes

5

Motivation

• Need to analyze binaries on proprietary ISAs

• ISAs not supported by existing tools
• No machine-readable specification
• Bad old days: No IEEE-754 floats, no 8-bit bytes

• Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs

o

5

Motivation

• Need to analyze binaries on proprietary ISAs

• ISAs not supported by existing tools
• No machine-readable specification
• Bad old days: No IEEE-754 floats, no 8-bit bytes

• Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs

• We instead require an adaptable IL

o

5

Motivation

• Need to analyze binaries on proprietary ISAs

• ISAs not supported by existing tools
• No machine-readable specification
• Bad old days: No IEEE-754 floats, no 8-bit bytes

• Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs

• We instead require an adaptable IL

Fun example: cLEMENCy architecture made up for DEFCON had
9-bit bytes, 27-bit words, middle-endian [1]

o

5

Design Goals of QIL

■ Sound analysis of binaries

Design Goals of QIL

• Sound analysis of binaries

• Lift binaries into a simple IL amenable to multiple analysis
backends

o

6

Design Goals of QIL

• Sound analysis of binaries

• Lift binaries into a simple IL amenable to multiple analysis
backends

• Closer to LLVM IR in spirit than, say, Ghidra or angr

o

Design Goals of QIL

• Sound analysis of binaries

• Lift binaries into a simple IL amenable to multiple analysis
backends

• Closer to LLVM IR in spirit than, say, Ghidra or angr

• Size of QIL (— 60 instructions) means easy to manipulate,

harder to write

o

6

Design Goals of QIL o

• Sound analysis of binaries

• Lift binaries into a simple IL amenable to multiple analysis
backends

• Closer to LLVM IR in spirit than, say, Ghidra or angr

• Size of QIL (— 60 instructions) means easy to manipulate,

harder to write

• Balance this by leveraging a Haskell as a macro-assembler for
QIL

6

Architectural Overview

ISA
Specification

DSL

M6800)—yr=i+

[Other ISAs

/Quameleon
Intermediate
La ng uage

Optimizations for
Analysis

Concrete Execution Engine

Custom Symbolic Execution
Engines

Weakest Precondition

LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation

o

7

Architectural Overview

M6800

Other ISAs

I
Quameleon
Intermediate
Language

Optimizations for
AnalysiF

/
v

Concrete Execution Engine

Custom Symbolic Execution
Engines

Weakest Precondition

LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation

QIL = Quameleon Intermediate Language

o

7

QIL Types

• Values: bit vectors of arbitrary width

• Locations: where values can be written

• Labels: Start of an instruction

• RAM: Mutable cells of Locations indexed by Values

• JoinPoints: Continuation within a block

• I/0: Like volatile variables

• Blocks: Single-entry, multiple exit

o

8

QIL Programs

A program consists of four sections:

1. Size of Locations

2. Sequence of allocations (of registers and memories)

3. Sequence of blocks, each binding a label

4. A code entry point

9

QIL Programs

A program consists of four sections:

1. Size of Locations

2. Sequence of allocations (of registers and memories)

3. Sequence of blocks, each binding a label

4. A code entry point

Within a block

■ Variables are static single assignment

■ No loops

9

Haskell DSL

ISA
Specification

DSL

M6800

Other ISAs

Quameleon
Intermediate
Language

Optimizations for
Analysis

Concrete Execution Engine

Custom Symbolic Execution
Engines

Weakest Precondition

LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation

10

Sample M6800

LDA A #14 ; A <- OxE

AND A $40 ; A <- A & f0x40]

We want to match the manual closely

13

11

...and Its Corresponding Semantics

AND r 1 -> do

ra <- getRegVal r

op <- loc8ToVal 1 -- Loc. of 8 bits in RAM

rv <- andBit ra op

z <- isZero rv

writeReg r rv

writeCC Zero z -- CC = Condition Code

branch next

12

...and Its Corresponding QIL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

code_ptr_size: S16

alloc_part: {

&1 := alloc[S8] // Reg A

&2 := alloc[S8] // Reg B

&3 := alloc[S16] // Reg X

&4 := alloc[S16] // Reg PC

&5 := alloc[S16] // Reg SP

&6 := alloc[S1] // Carry Flag

&7 := alloc[S1] // Overflow Flag

&8 := alloc[S1] // Zero Flag

&9 := alloc[S1] // Negative Flag

&10 := alloc[S1] // Interrupt Flag

&11 := alloc[S1] // HalfCarry Flag

MEM(1) := buildMemory[S16 SS]
}

o

13

...and Its Corresponding QIL (cont.)
16

17

18

code_part: {

@1 := block { }

@2 := registered_block "AND A (DIR8 Ox40)" 2 {

19 %1 := readLoc[S8] &1 // read Register A

20 &12 := MEM(1)[S16].BV[S8](40)

21 %2 := readLoc[S8] &12
22 %3 := AndBit[S8] %1 %2

23 writeLoc[S8] &1 %3 // set Register A

24 branch @1

25 }

26 @3 := registered_block "LDA A (IMM8 14)" 0 {

27 writeLoc[S8] &1 BV[S8](e) // set Register A

28 %1 := IsZero[S8] BV[S8](e)

29 writeLoc[S1] &8 %1 // set Zero Flag

30 branch @2

31 }

32 @4 := block { branch @3 }

33 }

34 entry_point: @4

o

14

Backends

ISA
Specification

DSL

Other ISAs

Quameleon
Intermediate
Language

Optimizations '-
Analysis

Concrete Execution Engine

Custom Symbolic Execution
Engines

Weakest Precondition

LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation

15

Current Backends

1. Emulator

o

16

Current Backends o

1. Emulator

2. Bridge to angr

• angr is a symbolic execution engine primarily for cybersecurity

16

Current Backends

1. Emulator

2. Bridge to angr

■ angr is a symbolic execution engine primarily for cybersecurity
■ Originally planned to translate from QIL to angr's IR, VEX

16

Current Backends

1. Emulator

2. Bridge to angr

■ angr is a symbolic execution engine primarily for cybersecurity
■ Originally planned to translate from QIL to angr's IR, VEX
■ VEX has byte-centric memory model, different functions for

add32, add16, etc.

16

Current Backends

1. Emulator

2. Bridge to angr

■ angr is a symbolic execution engine primarily for cybersecurity
■ Originally planned to translate from QIL to angr's IR, VEX
■ VEX has byte-centric memory model, different functions for

add32, add16, etc.
■ We needed addition of 96 bit integers

16

Current Backends

1. Emulator

2. Bridge to angr

■ angr is a symbolic execution engine primarily for cybersecurity
■ Originally planned to translate from QIL to angr's IR, VEX
■ VEX has byte-centric memory model, different functions for

add32, add16, etc.
■ We needed addition of 96 bit integers
■ Easier to treat QIL as an ISA that angr can execute!

16

Optimizations

ISA
Specification

DSL

M6800

Other ISAs

Quameleon
Intermediate
Language

Optimizations for 1
Analysis

Concrete Execution Engine

Custom Symbolic Execution
Engines

Weakest Precondition

LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation

o

17

QIL-QIL Optimizations

The goal is to facilitate analysis

o

18

QIL-QIL Optimizations

The goal is to facilitate analysis

■ Constant folding

■ Defunctionalization

■ Dead code elimination

o

18

QIL-QIL Optimizations

The goal is to facilitate analysis

■ Constant folding

■ Defunctionalization

■ Dead code elimination

■ lnlining with simple heuristics, e.g.
inline everywhere

Reduce
code size

Simplify
CFG

18

Future Work

■ Jump to a Location in memory

■ Use abstract interpretation to find Locations code could jump

19

Future Work

■ Jump to a Location in memory

■ Use abstract interpretation to find Locations code could jump

■ Formalize QIL and QIL-QIL transformations in Coq

19

Future Work

■ Jump to a Location in memory

■ Use abstract interpretation to find Locations code could jump

■ Formalize QIL and QIL-QIL transformations in Coq

■ Loops with statically-known bounds in blocks

■ Don't need the full sophistication of more richly-featured ILs

19

Future Work

■ Jump to a Location in memory

■ Use abstract interpretation to find Locations code could jump

■ Formalize QIL and QIL-QIL transformations in Coq

■ Loops with statically-known bounds in blocks

■ Don't need the full sophistication of more richly-featured ILs

■ Plan to open source as much as possible

19

Conclusion

• Quameleon is a tool for sound binary analysis in its early

stages

• QIL is a typed, RISC-like IL to specify legacy architectures

• Leverage machine readability with the simplicity of QIL

• Leverage features of Haskell as an assembler for QIL

• Haskell DSL matches the structure of ISA specs

• Prefer the flexibility of few assumptions over efficiency of
powerful model

o

20

References I

pi TRAIL OF BITS.
An extra bit of analysis for clemency.

Available at https://blog.trailofbits.com/2017/07/30/
an-extra-bit-of-analysis-for-clemency/.

21

