is paper describes objective technical results and analysis. Any subjective views or opinions that might be expres
the paper do not neg&sx,aril represent te views of the U.'S. Department of Energy or the United States Governm

Quameleon: A Lifter and Intermediate
Language for Binary Analysis

Samuel D. Pollard, Philip Johnson-Freyd, Jon Aytac,
Tristan Duckworth, Michael J. Carson, Geoffrey C. Hulette,

Christopher B. Harrison
September 13, 2019

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-NAO003525. SAND No. 2222777772-2222

©ENERGY 4

About Us @.

UNIVERSITY OF

OREGON

Digital
* °‘ Foundations
& Maths

m About me: Ph.D. candidate at the
University of Oregon, summer O

intern at Sandia National Labs

About Us m

n Abf)ut r_ne: Ph.D. candidate at the T T —
University of Oregon, summer

intern at Sandia National Labs OREGON

m The other six authors work at C Digital
Sandia with some portion of their Foundations

time spent on Quameleon & Maths

Introduction m

m Sandia does forensic analysis of legacy, high-consequence
systems

Introduction

m Sandia does forensic analysis of legacy, high-consequence
systems

m e.g. maintaining nuclear weapon control systems

Introduction m

m Sandia does forensic analysis of legacy, high-consequence
systems

m e.g. maintaining nuclear weapon control systems

m Typically decades old with large portions written in assembly

Introduction m

m Sandia does forensic analysis of legacy, high-consequence
systems

m e.g. maintaining nuclear weapon control systems
m Typically decades old with large portions written in assembly
m Original authors or source code may not be available

Introduction m

m Sandia does forensic analysis of legacy, high-consequence
systems

m e.g. maintaining nuclear weapon control systems
m Typically decades old with large portions written in assembly

m Original authors or source code may not be available

m Current tools do not support our architectures nor do they
seem easily adapted

Introduction

m Sandia does forensic analysis of legacy, high-consequence
systems

m e.g. maintaining nuclear weapon control systems
m Typically decades old with large portions written in assembly
m Original authors or source code may not be available
m Qur use case: analyze simple systems completely

m Current tools do not support our architectures nor do they
seem easily adapted

History m

m Prior work consisted of one-off Haskell programs for a single
ISA and single binary

History m

m Prior work consisted of one-off Haskell programs for a single
ISA and single binary

m Successful but not scalable

History m

m Prior work consisted of one-off Haskell programs for a single
ISA and single binary

m Successful but not scalable

m Rewrite started as a summer project with M6800

History

m Prior work consisted of one-off Haskell programs for a single
ISA and single binary

m Successful but not scalable
m Rewrite started as a summer project with M6800

m Has since expanded to a small team working on Quameleon
(the other six authors)

History m

m Prior work consisted of one-off Haskell programs for a single
ISA and single binary

m Successful but not scalable
m Rewrite started as a summer project with M6800

m Has since expanded to a small team working on Quameleon
(the other six authors)

@ | M8800 Miéroprocessor Programming Manuai: |°)

¥ . sumw 6800 SR .

Motivation

m Need to analyze binaries on proprietary ISAs

Motivation

m Need to analyze binaries on proprietary ISAs

m ISAs not supported by existing tools
m No machine-readable specification
m Bad old days: No IEEE-754 floats, no 8-bit bytes

Motivation

m Need to analyze binaries on proprietary ISAs
m ISAs not supported by existing tools
m No machine-readable specification
m Bad old days: No IEEE-754 floats, no 8-bit bytes
m Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs

Motivation

m Need to analyze binaries on proprietary ISAs

m ISAs not supported by existing tools
m No machine-readable specification
m Bad old days: No IEEE-754 floats, no 8-bit bytes

m Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs

m We instead require an adaptable IL

Motivation m

m Need to analyze binaries on proprietary ISAs

m ISAs not supported by existing tools
m No machine-readable specification
m Bad old days: No IEEE-754 floats, no 8-bit bytes

m Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs

m We instead require an adaptable IL

Fun example: cLEMENCy architecture made up for DEFCON had
9-bit bytes, 27-bit words, middle-endian [1]

Design Goals of QIL

m Sound analysis of binaries

Design Goals of QIL m

m Sound analysis of binaries

m Lift binaries into a simple IL amenable to multiple analysis
backends

Design Goals of QIL

m Sound analysis of binaries

m Lift binaries into a simple IL amenable to multiple analysis
backends

m Closer to LLVM IR in spirit than, say, Ghidra or angr

Ias

Design Goals of QIL m

m Sound analysis of binaries

m Lift binaries into a simple IL amenable to multiple analysis
backends

m Closer to LLVM IR in spirit than, say, Ghidra or angr

m Size of QIL (~ 60 instructions) means easy to manipulate,
harder to write

Design Goals of QIL m

m Sound analysis of binaries

m Lift binaries into a simple IL amenable to multiple analysis
backends

m Closer to LLVM IR in spirit than, say, Ghidra or angr

m Size of QIL (~ 60 instructions) means easy to manipulate,
harder to write

m Balance this by leveraging a Haskell as a macro-assembler for

QIL

Architectural Overview m

ISA | Concrete Execution Engine |
Specification
DSL Custom Symbolic Execution
Engines
Quameleon

|
|
M6800 Intermediate | | Weakest Precondition |
Language
Other ISAs ! | LLVM/KLEE |

Angr toolchain
(Symbolic Execution, etc.)

Optimizations for
Analysis |

Abstract Interpretation |

Architectural Overview

Quameleon
Intermediate
Language

QIL = Quameleon Intermediate Language

QIL Types

Values: bit vectors of arbitrary width

Locations: where values can be written

Labels: Start of an instruction

RAM: Mutable cells of Locations indexed by Values
JoinPoints: Continuation within a block

I/O: Like volatile variables

Blocks: Single-entry, multiple exit

QIL Programs

A program consists of four sections:
1. Size of Locations
2. Sequence of allocations (of registers and memories)
3. Sequence of blocks, each binding a label
4. A code entry point

QIL Programs

A program consists of four sections:
1. Size of Locations
2. Sequence of allocations (of registers and memories)
3. Sequence of blocks, each binding a label
4. A code entry point
Within a block
m Variables are static single assignment

m No loops

Haskell DSL

ISA Concrete Exec on Eng
Specification
DSL

_ B : 2
M6800 ,ﬁt} termec
Other ISAs

10

Sample M6800

LDA A #14 ; A <- OxE
AND A $40 ; A <- A & [0x40]

We want to match the manual closely

11

..and lts Corresponding Semantics

AND r 1 -> do
ra <- getRegVal r
op <- loc8ToVal 1 -- Loc. of 8 bits in RAM
rv <- andBit ra op
z <- isZero rv
writeReg r rv
writeCC Zero z -- CC = Condition Code
branch next

12

..and Its Corresponding QIL

© 0 ~NO G b W N =

= = e
A W IND = O

H
o
[

code_ptr_size: S16

alloc part {
&1
&2 :=
&3 :=
&4 :=
&5
&6
&7 :=
&8 :=
&9
&10 :
&11
MEM(1)

= alloc[S8] // Reg A
alloc[S8] // Reg B
alloc[S16] // Reg X
alloc[S16] // Reg PC
alloc[S16] // Reg SP
alloc[S1] // Carry Flag
alloc[S1] // Overflow Flag
alloc[S1] // Zero Flag
alloc[S1] // Negative Flag
alloc[S1] // Interrupt Flag
alloc([S1] // HalfCarry Flag
= buildMemory[S16 S8]

13

..and Its Corresponding QIL (cont.)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

code_part: {

}

@1 := block { }

@2 := registered_block "AND A (DIR8 0x40)" 2 {
%1 := readLoc[S8] &1 // read Register A
&12 := MEM(1) [S16].BV[S8] (40)

%2 := readLoc[S8] &12

%3 := AndBit[S8] %1 %2

writeLoc[S8] &1 %3 // set Register A
branch @1

}

@3 := registered_block "LDA A (IMM8 14)" 0 {
writeLoc[S8] &1 BV[S8](e) // set Register A
%1 := IsZero[S8] BV[S8] (e)
writeLoc[S1] &8 %1 // set Zero Flag
branch @2

}

@4 := block { branch @3 }

entry_point: @4

14

e T ey

Backends m

| Concrete Execution Engine |

Custom Symbolic Execution
Engines

| Weakest Precondition |

| LLVM/KLEE |

Angr toolchain
(Symbolic Execution, etc.)

| Abstract Interpretation |

15

Current Backends

1. Emulator

16

Current Backends m

1. Emulator
2. Bridge to angr
m angr is a symbolic execution engine primarily for cybersecurity

16

Current Backends m

1. Emulator
2. Bridge to angr

m angr is a symbolic execution engine primarily for cybersecurity
m Originally planned to translate from QIL to angr's IR, VEX

16

Current Backends m

1. Emulator
2. Bridge to angr

® angr is a symbolic execution engine primarily for cybersecurity

m Originally planned to translate from QIL to angr's IR, VEX

m VEX has byte-centric memory model, different functions for
add32, add16, etc.

16

Current Backends m

1. Emulator
2. Bridge to angr

® angr is a symbolic execution engine primarily for cybersecurity

m Originally planned to translate from QIL to angr's IR, VEX

m VEX has byte-centric memory model, different functions for
add32, add16, etc.

m We needed addition of 96 bit integers

16

Current Backends m

1. Emulator

2. Bridge to angr
® angr is a symbolic execution engine primarily for cybersecurity
m Originally planned to translate from QIL to angr's IR, VEX
m VEX has byte-centric memory model, different functions for
add32, add16, etc.
m We needed addition of 96 bit integers
m Easier to treat QIL as an ISA that angr can execute!

16

Optimizations

M6800

Other ISAs

Intermediate
Language

Optimizations for
Analysis

Concrete Execution Engine

Custom Symbolic Execution

Engi

Weakest Precondition
LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation

17

QIL-QIL Optimizations

The goal is to facilitate analysis

18

QIL-QIL Optimizations

The goal is to facilitate analysis
m Constant folding
m Defunctionalization

m Dead code elimination

18

QIL-QIL Optimizations

The goal is to facilitate analysis

Constant folding
Defunctionalization
Dead code elimination

Inlining with simple heuristics, e.g.
inline everywhere

Reduce
code size

Simplify
CFG

18

Future Work

m Jump to a Location in memory
m Use abstract interpretation to find Locations code could jump

19

Future Work

m Jump to a Location in memory
m Use abstract interpretation to find Locations code could jump

m Formalize QIL and QIL-QIL transformations in Coq

19

Future Work

m Jump to a Location in memory

m Use abstract interpretation to find Locations code could jump
m Formalize QIL and QIL-QIL transformations in Coq
m Loops with statically-known bounds in blocks

m Don't need the full sophistication of more richly-featured ILs

19

Future Work

m Jump to a Location in memory

m Use abstract interpretation to find Locations code could jump
m Formalize QIL and QIL-QIL transformations in Coq
m Loops with statically-known bounds in blocks

m Don't need the full sophistication of more richly-featured ILs

m Plan to open source as much as possible

19

Conclusion

m Quameleon is a tool for sound binary analysis in its early
stages

QIL is a typed, RISC-like IL to specify legacy architectures
Leverage machine readability with the simplicity of QIL

|
|
m Leverage features of Haskell as an assembler for QIL
m Haskell DSL matches the structure of ISA specs

|

Prefer the flexibility of few assumptions over efficiency of
powerful model

20

References |

[1] TrAIL oF BITS.
An extra bit of analysis for clemency.
Available at https://blog.trailofbits.com/2017/07/30/
an-extra-bit-of-analysis-for-clemency/.

21

