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Introduction

m Sandia does forensic analysis of legacy, high-consequence
systems

m e.g. maintaining nuclear weapon control systems
m Typically decades old with large portions written in assembly
m Original authors or source code may not be available
m Qur use case: analyze simple systems completely

m Current tools do not support our architectures nor do they
seem easily adapted
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m Need to analyze binaries on proprietary ISAs

m ISAs not supported by existing tools
m No machine-readable specification
m Bad old days: No IEEE-754 floats, no 8-bit bytes

m Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs

m We instead require an adaptable IL

Fun example: cLEMENCy architecture made up for DEFCON had
9-bit bytes, 27-bit words, middle-endian [1]
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Design Goals of QIL m

m Sound analysis of binaries

m Lift binaries into a simple IL amenable to multiple analysis
backends

m Closer to LLVM IR in spirit than, say, Ghidra or angr

m Size of QIL (~ 60 instructions) means easy to manipulate,
harder to write

m Balance this by leveraging a Haskell as a macro-assembler for

QIL
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Quameleon
Intermediate
Language

QIL = Quameleon Intermediate Language




QIL Types

Values: bit vectors of arbitrary width

Locations: where values can be written

Labels: Start of an instruction

RAM: Mutable cells of Locations indexed by Values
JoinPoints: Continuation within a block

I/O: Like volatile variables

Blocks: Single-entry, multiple exit
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2. Sequence of allocations (of registers and memories)
3. Sequence of blocks, each binding a label
4. A code entry point




QIL Programs

A program consists of four sections:
1. Size of Locations
2. Sequence of allocations (of registers and memories)
3. Sequence of blocks, each binding a label
4. A code entry point
Within a block
m Variables are static single assignment

m No loops




Haskell DSL

ISA Concrete Exec on Eng
Specification
DSL

_ B : 2
M6800 ,ﬁt} termec
Other ISAs
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Sample M6800

LDA A #14 ; A <- OxE
AND A $40 ; A <- A & [0x40]

We want to match the manual closely

11




..and lts Corresponding Semantics

AND r 1 -> do
ra <- getRegVal r
op <- loc8ToVal 1 -- Loc. of 8 bits in RAM
rv <- andBit ra op
z <- isZero rv
writeReg r rv
writeCC Zero z -- CC = Condition Code
branch next

12




..and Its Corresponding QIL

© 0 ~NO G b W N =

= = e
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code_ptr_size: S16

alloc part {
&1
&2 :=
&3 :=
&4 :=
&5
&6
&7 :=
&8 :=
&9
&10 :
&11
MEM(1)

= alloc[S8] // Reg A
alloc[S8] // Reg B
alloc[S16] // Reg X
alloc[S16] // Reg PC
alloc[S16] // Reg SP
alloc[S1] // Carry Flag
alloc[S1] // Overflow Flag
alloc[S1] // Zero Flag
alloc[S1] // Negative Flag
alloc[S1] // Interrupt Flag
alloc([S1] // HalfCarry Flag
= buildMemory[S16 S8]
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..and Its Corresponding QIL (cont.)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

code_part: {

}

@1 := block { }

@2 := registered_block "AND A (DIR8 0x40)" 2 {
%1 := readLoc[S8] &1 // read Register A
&12 := MEM(1) [S16].BV[S8] (40)

%2 := readLoc[S8] &12

%3 := AndBit[S8] %1 %2

writeLoc[S8] &1 %3 // set Register A
branch @1

}

@3 := registered_block "LDA A (IMM8 14)" 0 {
writeLoc[S8] &1 BV[S8](e) // set Register A
%1 := IsZero[S8] BV[S8] (e)
writeLoc[S1] &8 %1 // set Zero Flag
branch @2

}

@4 := block { branch @3 }

entry_point: @4

14
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Backends m

| Concrete Execution Engine |

Custom Symbolic Execution
Engines

| Weakest Precondition |

| LLVM/KLEE |

Angr toolchain
(Symbolic Execution, etc.)

| Abstract Interpretation |
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Current Backends m

1. Emulator

2. Bridge to angr
® angr is a symbolic execution engine primarily for cybersecurity
m Originally planned to translate from QIL to angr's IR, VEX
m VEX has byte-centric memory model, different functions for
add32, add16, etc.
m We needed addition of 96 bit integers
m Easier to treat QIL as an ISA that angr can execute!
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Optimizations

M6800

Other ISAs

Intermediate
Language

Optimizations for
Analysis

Concrete Execution Engine

Custom Symbolic Execution

Engi

Weakest Precondition
LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation
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QIL-QIL Optimizations

The goal is to facilitate analysis

Constant folding
Defunctionalization
Dead code elimination

Inlining with simple heuristics, e.g.
inline everywhere

Reduce
code size

Simplify
CFG
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Future Work

m Jump to a Location in memory

m Use abstract interpretation to find Locations code could jump
m Formalize QIL and QIL-QIL transformations in Coq
m Loops with statically-known bounds in blocks

m Don't need the full sophistication of more richly-featured ILs

m Plan to open source as much as possible

19




Conclusion

m Quameleon is a tool for sound binary analysis in its early
stages

QIL is a typed, RISC-like IL to specify legacy architectures
Leverage machine readability with the simplicity of QIL

|
|
m Leverage features of Haskell as an assembler for QIL
m Haskell DSL matches the structure of ISA specs

|

Prefer the flexibility of few assumptions over efficiency of
powerful model

20
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