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Overview

= Here we discuss a physics-based “meso-scale” (0.1 - 1.0 um) model of
well-characterized “real” surfaces for use in large-scale PIC-DSMC
vacuum breakdown simulations (Fig. 1).

= The meso-scale model is informed by locally characterizing sputter
deposited Pt surfaces (0.1 — 10 nm) using Scanning Tunneling
Microscopy (STM), Atomic Force Microscopy (AFM), and PhotoEmission
Electron Microscopy (PEEM) before breakdown.

« Field enhancement (B) factor probability density distribution (PDF)

from STM and/or AFM measurements of the resolved real surface. = .
igure

surface mesh in
the plasma code

+ Work function (¢) PDF obtained directly from PEEM measurements
of the resolved surface.

Surface Characterization

PEEM Measurement - ¢ Variation

= PhotoEmission Electron Microscopy was performed on sputter deposited Pt surfaces to obtain

the spatial variation in the work function (¢)

= Although variation across the sample surface was only a few percent, ¢ is in the argument of the
@ pE? -683x1078 )

exponent in the Fowler-Nordheim equation, j = SRR BE and the tail of the

distribution can initiate field emission and ultimately breakdown

= Significant decrease in ¢ of ~10% was observed due to surface contaminants from exposure to
air (Fig. 2)

= Applied the ~10nm-scale PDF’s in meso-scale model to set element ¢’s in PIC-DSMC simulation
AFM Measurement - B Variation
= Atomic Force Microscopy was performed on sputter deposited Pt surfaces

= Real AFM data point data interpolated and converted into model using SolidWorks, with surface
relief scaled by 10x, otherwise variations observed in  deemed insignificant (Fig. 3)

= Generated topology meshed in Cubit, applying an unstructured tetrahedral FEM (Fig. 4)
* Flat anode placed ~10 um from as-measured surface
+ ~1 nm surface elements placed near cathode to resolve features

= B at nano scale based on ratio of E-field normal (E,) to a “resolved” (0.1 — 10 nm) element face
to that of applied E-field (E,,,) seen by that element: g = i (Fig. 5)

¢, p Atomic Scale PDFs

Poly-Pt (111) on ZnO/SiO,/Si
Air-exposed Annealed

Virgin  10x Amplification in Z

I |

52 54 56 58 Figure 3

Wirk function (V) Field Enhancement Factor (§) PDF
. .

. Large j(E(t),
obtained from Poisson solve using Finite Element mesh created i 0-p)

Figure 2

Probability

0 1 2 3

field enhancement factor (B)

Figure 4 Figure 5
Seni Natons Latretoios i i oty miagee st opermie

Natora ochmoiogy and Evgitorig Sactons of Sanie. L0 whol et

Sy of Homanel amatons, me. or e U, Deparrantef ey

Nl otlos oty Aamiaraion inoe sorac D NACORS825 SN No.

ey

S, DEPARTHENT OF

(0 ENERGY

Meso-Scale Model

= To scale from nano to meso dimensions, we can employ the following approaches:
* Generate an effective g and ¢
+ Compute total field emission current vs. E, for a resolved AFM area of 10x10 pm
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¢+ n-linear solve for B (Fig. 6): i = A

¢ B decreasing with E,, expected since many small B regions “light up” at elevated E,,,
collectively dragging down the effective B; exact behavior depends on atomic-scale PDF

* Apply “brute force”

+ A projection factor (f,) is calculated based on the projected (A) and actual (Agc,)

_ Zraces Aface

areasa of every element from the resolved nano-scale mesh: fy; =

L races Aproj
+ N local emitters for each meso-scale element face are determined by sampling from the
and ¢ PDFs:
Bireso 4nm « Example: B and ¢ sampled from atomic-scale PDF’s for 8
N= 2" foroj = 1—(2) =8 local faces, drawing 8 local emitters (Fig. 7)
nano nm
Effective (B) vs. Applied Field » Since FE is very non-linear, threshold current contribution of

S

T 0.1% results in N = ~0.01% of total atomic-scale emitters, B,
and ¢ being stored

Example: 1 um? element = 104-106 atomic-scale emitters,
resulting in <1000 emitters stored
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= At every At time step in PIC algorithm, compute E, on face of each surface element and loop over all
3
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~100 atomic-scale local emitters, B, and ¢ ifqce = A

Results

= Comparable behavior for current vs. E,, between meso-scale model and STM measurements (Fig.
8), with meso-model scaled by ~12 x iy, for flat anode located 10.4 um from mean cathode height.
Difference probably from field variations due to changes in gap distance for STM surface.

Applied Field (GV/m)

= FE i-V curve for tip o mm ay e en e
radius<100 nm placed o0 (& SRR A R R
~200 nm away, with 100 | o
breakdown at ~ 4GV/m, " e o
3 o
suggesting that for 2 o4 T 4 %
E 3 © E
smooth sputter = = %o
deposited Pt, no gooy 7 Bu=2.18 aNE °
S/ o 18 '+ o J
I s / o—Meso-scale model
small-B atomic 1ESf— s 4 %OO
scale features grow ‘E‘: a8 1 01 L s 4
; o 1 %
into large-p features 1eefd 3 %
facilitating breakdown g9t — : : : : : : 001 L : : : : o
1.0 15 20 25 3.0 35 40 -800 <700 -600 =500 -400 -300
to occur at ~10 MV/m Applied E-field (GV/m) Voltage (V)
(Fig. 9). Figure 8 Figure 9

Surface e- Density

= Spatial electron density STM (Ax<10nm) Meso-scale (Ax=

profiles just above cathode for
meshed STM and flat meso-
scaled surfaces are very
dissimilar (Fig. 10), possibly
due to atomic-scale emitter
Be’s and ¢,’s being picked
independently of one another
for every meso-scale surface
element. Current model needs
to be modified to take into account
correlation between p and ¢!
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