

MODELING THE ROLE OF β ON VACUUM FIELD EMISSION IN PIC DSMC SIMULATIONS: SCALING FROM NANO TO MESO SCALE

Ashish Jindal, Chris Moore, Ezra Bussmann, Taisuke Ohta, Morgann Berg, Cherrelle Thomas, David Scrymgeour, Paul Clem, and Matthew Hopkins

Overview

- Here we discuss a physics-based "meso-scale" (0.1 - 1.0 μm) model of well-characterized "real" surfaces for use in large-scale PIC-DSMC vacuum breakdown simulations (Fig. 1).

- The meso-scale model is informed by locally characterizing sputter deposited Pt surfaces (0.1 - 10 nm) using Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM), and PhotoEmission Electron Microscopy (PEEM) before breakdown.

- Field enhancement (β) factor probability density distribution (PDF) obtained from Poisson solve using Finite Element mesh created from STM and/or AFM measurements of the resolved real surface.
- Work function (ϕ) PDF obtained directly from PEEM measurements of the resolved surface.



Figure 1 surface mesh in the plasma code

Surface Characterization

PEEM Measurement - ϕ Variation

- PhotoEmission Electron Microscopy was performed on sputter deposited Pt surfaces to obtain the spatial variation in the work function (ϕ)
- Although variation across the sample surface was only a few percent, ϕ is in the argument of the exponent in the Fowler-Nordheim equation, $j = \frac{q^3}{8\pi h} \beta E^2 e^{-6.83 \times 10^7 \frac{\phi^{3/2} v(y)}{\beta E}}$ and the tail of the distribution can initiate field emission and ultimately breakdown
- Significant decrease in ϕ of ~10% was observed due to surface contaminants from exposure to air (Fig. 2)
- Applied the ~10nm-scale PDF's in meso-scale model to set element ϕ 's in PIC-DSMC simulation

AFM Measurement - β Variation

- Atomic Force Microscopy was performed on sputter deposited Pt surfaces
- Real AFM data point data interpolated and converted into model using SolidWorks, with surface relief scaled by 10x, otherwise variations observed in β deemed insignificant (Fig. 3)
- Generated topology meshed in Cubit, applying an unstructured tetrahedral FEM (Fig. 4)
- Flat anode placed ~10 μm from as-measured surface
- ~1 nm surface elements placed near cathode to resolve features
- β at nano scale based on ratio of E-field normal (E_{\perp}) to a "resolved" (0.1 - 10 nm) element face to that of applied E-field (E_{app}) seen by that element: $\beta = \frac{E_{\perp}}{E_{\text{app}}}$ (Fig. 5)

ϕ, β Atomic Scale PDFs

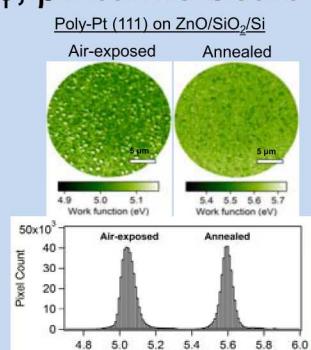


Figure 2

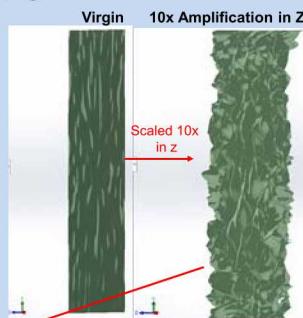


Figure 3

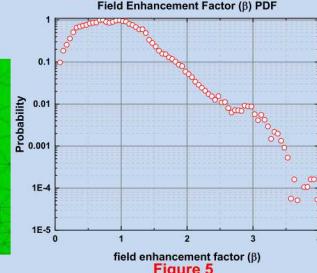


Figure 4

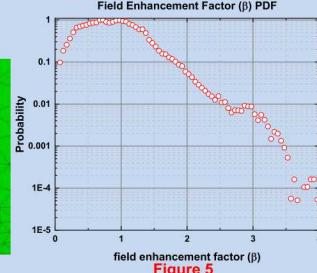


Figure 5

Meso-Scale Model

- To scale from nano to meso dimensions, we can employ the following approaches:
 - Generate an effective β and ϕ
 - Compute total field emission current vs. E_{app} for a resolved AFM area of 10x10 μm
 - n-linear solve for β_{eff} (Fig. 6): $i = A_{\text{eff}} \frac{q^3}{8\pi h} \frac{\beta_{\text{eff}} E^2}{t^2(y)} e^{-6.83 \times 10^7 \frac{\phi^{3/2} v(y)}{\beta_{\text{eff}} E}}$
 - β_{eff} decreasing with E_{app} expected since many small β regions "light up" at elevated E_{app} , collectively dragging down the effective β ; exact behavior depends on atomic-scale β PDF
 - Apply "brute force"
 - A projection factor (f_{proj}) is calculated based on the projected (A_{proj}) and actual (A_{face}) areas of every element from the resolved nano-scale mesh: $f_{\text{proj}} = \frac{\sum_{\text{faces}} A_{\text{face}}}{\sum_{\text{faces}} A_{\text{proj}}}$
 - N local emitters for each meso-scale element face are determined by sampling from the β and ϕ PDFs:

$$N = \frac{A_{\text{meso}}}{A_{\text{nano}}} f_{\text{proj}} = \frac{4\text{nm}}{1\text{nm}} (2) = 8$$

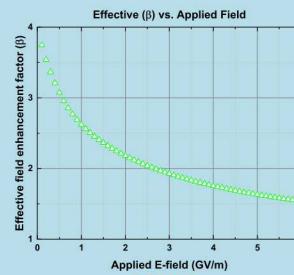


Figure 6

- Example: β and ϕ sampled from atomic-scale PDF's for 8 local faces, drawing 8 local emitters (Fig. 7)
- Since FE is very non-linear, threshold current contribution of 0.1% results in $N = 0.01\%$ of total atomic-scale emitters, β and ϕ being stored
- Example: 1 μm^2 element = $10^4\text{-}10^6$ atomic-scale emitters, resulting in <1000 emitters stored

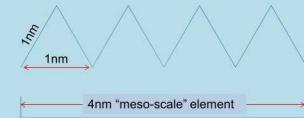
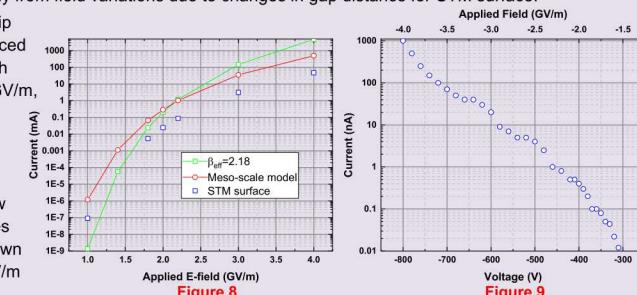



Figure 7

- At every Δt time step in PIC algorithm, compute E_{\perp} on face of each surface element and loop over all ~100 atomic-scale local emitters, β_e , and ϕ_e : $i_{\text{face}} = A_{\text{eff}} \frac{q^3}{8\pi h} \frac{\beta_e E^2}{t^2(y)} e^{-6.83 \times 10^7 \frac{\phi_e^{3/2} v(y)}{\beta_e E}}$

Results

- Comparable behavior for current vs. E_{app} between meso-scale model and STM measurements (Fig. 8), with meso-model scaled by $\sim 12 \times i_{\text{STM}}$ for flat anode located 10.4 μm from mean cathode height. Difference probably from field variations due to changes in gap distance for STM surface.

Surface e- Density

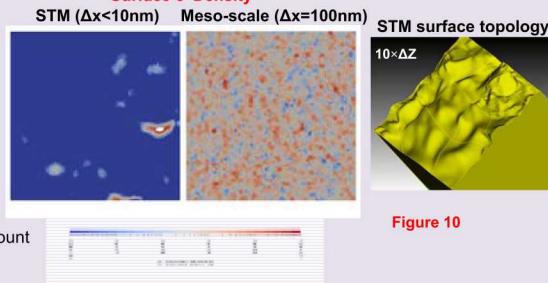


Figure 10

- Spatial electron density profiles just above cathode for meshed STM and flat meso-scaled surfaces are very dissimilar (Fig. 10), possibly due to atomic-scale emitter β_e 's and ϕ_e 's being picked independently of one another for every meso-scale surface element. Current model needs to be modified to take into account correlation between β and ϕ !