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Overview
• Here we discuss a physics-based "meso-scale (0.1 - 1.0 gm) model of
well-characterized "real" surfaces for use in large-scale PIC-DSMC
vacuum breakdown simulations (Fig. 1).

• The meso-scale model is informed by locally characterizing sputter
deposited Pt surfaces (0.1 - 10 nm) using Scanning Tunneling
Microscopy (STM), Atomic Force Microscopy (AFM), and PhotoEmission
Electron Microscopy (PEEM) before breakdown.

• Field enhancement ((3) factor probability density distribution (PDF)
obtained from Poisson solve using Finite Element mesh created
from STM and/or AFM measurements of the resolved real surface.

• Work function (4)) PDF obtained directly from PEEM measurements
of the resolved surface.
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PEEM Measurement - O Variation

• PhotoEmission Electron Microscopy was performed on sputter deposited Pt surfaces to obtain
the spatial variation in the work function (0)

• Although variation across the sample surface was only a few percent, is in the argument of the

exponent in the Fowler-Nordheim equation, j = — flE and the tail of the
sq,:h tflz E(:) e 
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distribution can initiate field emission and ultimately breakdown

• Significant decrease in 4> of -10% was observed due to surface contaminants from exposure to
air (Fig. 2)

• Applied the -10nm-scale PDFs in meso-scale model to set element in PIC-DSMC simulation

AFM Measurement - [3 Variation

• Atomic Force Microscopy was performed on sputter deposited Pt surfaces

• Real AFM data point data interpolated and converted into model using SolidWorks, with surface
relief scaled by 10x, otherwise variations observed in p deemed insignificant (Fig. 3)

• Generated topology meshed in Cubit, applying an unstructured tetrahedral FEM (Fig. 4)

• Flat anode placed -10 gm from as-measured surface

• -1 nm surface elements placed near cathode to resolve features

• p at nano scale based on ratio of E-field normal (k) to a "resolved" (0.1 - 10 nm) element face
to that of applied E-field (Eapp) seen by that element: /3 = 

Eann 
(Fig. 5)
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Meso-Scale Model
• To scale from nano to meso dimensions, we can employ the following approaches:

• Generate an effective 0 and (I)

• Compute total field emission current vs. Eapp for a resolved AFM area of 10x1 0 gm

E 6 832[1074'slzv(Y)

• n-linear solve for 13eff (Fig. 6): i= Aeff8rzh t e

*Den decreasing with Eapp expected since many small p regions "light ur at elevated EeQp,
collectively dragging down the effective p; exact behavior depends on atomic-scale 0 PDF

• Apply "brute force"

• A projection factor (fpro)) is calculated based on the projected (Apr.) and actual (Arec.)

areasa of every element from the resolved nano-scale mesh: fpro, =If'"' A r“"
L4f aces AP,01

• N local emitters for each meso-scale element face are determined by sampling from the 0
and (1:, PDFs:

A 4nm
N = n's° f = (2) = 8
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Example: p and (I) sampled from atomic-scale PDFs for 8
local faces, drawing 8 local emitters (Fig. 7)

Since FE is very non-linear, threshold current contribution of
0.1% results in N = -0.01% of total atomic-scale emitters, p,
and 4) being stored

Example: 1 grn, element = 104-106 atomic-scale emitters,
resulting in <1000 emitters stored
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• At every At time step in PIC algorithm, compute Elon face of each surface ,lement and loop over all

...
-100 atomic-scale local emitters, p., and 4).: f i = of A e-

6.83x107°efle:

Results
• Comparable behavior for current vs. Eapp between meso-scale model and STM measurements (Fig.
8), with meso-model scaled by -12 x ism for flat anode located 10.4 gm from mean cathode height.
Difference probably from field variations due to changes in gap distance for STM surface
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