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Motivation .

Synchronous iterative methods:

m Alternate computation and communication
— High network peak usage, low network usage during computation phases

m Are limited by global synchronization at scale, in particular under load
imbalance due to

m heterogeneous systems,
m unbalanced local solve costs,
m (transient) variability in communication cost

Asynchronous methods
m use the network more evenly,
m absorb load imbalance more easily,
m are more resilient to faults,

m sacrifice deterministic behavior.

|
Can asynchronous linear solvers be used at scale?
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Restricted Additive Schwarz iteration (RAS) .

Solve

-Au =f inQCRY
u =0 ondA.

Overlapping partition Q = U,€2,
fork=1,2,...do
Residual r® = f + Ay
Solve in parallel
~AdY =r®  ing,,
d¥ =0  onoQ,.

Update

u® = utD 1 3 g,q

p

m {6,} is a partition of unity.

m Careful choice of 6, eliminates need for
communication in the update step.
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Algebraic version of RAS

Solve

Fork=1,2,...

0 = a3 RID,A, 'R, (F - AT )
p

® R, is the restriction to subdomain p,
A, = R,AR].

m The diagonal matrices D, satisfy discrete
partition of unity property

=" RiD;R;.
p

m Similar to Additive Schwarz, but does not
require damping to work as an iterative
method.

m Unsymmetric iteration.

@&
National
Laboratories.

Overlapping partition Q = U,€,
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Communication pattern of RAS ki

oG 1>+ZR D, A* R, (f A ”)

Iocal solve
residual

update

m Computation of the residual requires neighborhood communication (halo
values).

m Local solve and update are communication free.
Synchronous residual computation at iteration k:

z —(k—1 k—1 k—1
RP (f - Au( )) _‘,1(7 Iocal) + Z _‘z(q halo)
Asynchronous residual computation at time t:

7 —(t 70 it
Ry (f — Al )) Tpjocal T Z a, ZJ halo

Fﬁf;,halo can be out of date since it is computed on subdomain g and needs to be sent
across the network.
— Asynchronous iteration is not mathematically equivalent to the synchronous one.
— Special convergence theory is required. (See work by Szyld, Frommer, etc)
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Realizing asynchronous communication: One-sided MPI .
m Allows MPI ranks to directly read/write exposed memory regions on other
ranks.

m If the hardware (network interfaces) and MPI implementation support it, can
be significantly faster than two-sided communication.

MPI_Win_create Expose a memory region.

MPI_Put Write into a window.

MPI_Get Read from a window.

MPI_Win_lock/ Locks/unlocks a window, exclusive or shared access.

MPI_Win_unlock

MPI_Win_lock_all/ Locks/unlocks a window on all processes.
MPI_Win_unlock_all

MPI_Win_flush Complete all outstanding operations.

After testing the different options, we settled on MPI_Win_lock_all /
MPI_Win_unlock and MPI_Put.
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Convergence detection b

Convergence detection in synchronous iterations: |r] < e.
For asynchronous methods:

m No global iteration count, no synchronized global residual

m Norms and inner products introduce synchronization points.
Our ad-hoc approach for convergence detection:

m Compute norm of local residual vector ||, |

m Save to window on rank O

m Rank O sums contributions and exposes result in a different window.

m Subdomains retrieve approximate residual norm and terminate if small enough.
Drawbacks:

m Local residual norms are not necessarily monotonically decreasing.

m Might iterate longer than necessary when rank 0O is busy.
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Requirements for use at scale

m No GMRES acceleration (inner products and norms are synchronization points)
— Need to use the best possible fixed point iteration.

m One-level methods are not scalable
— Asynchronous coarse grid solve for global information exchange

m Convergence is guaranteed.

8/23



Optimized RAS [1, 6, 7] () ..

Subdomain problem in RAS
~AdP =r® inQ,
d,f,k) =0 on 0%2.
The optimal choice would be
—AdY  =r® inQ,
df,k) =0 on 9, N 0N,
(k)
ngﬁ == AQ; (d,(,k)> = on an \ 89,

where Ag; is the Poincaré-Steklov or Dirichlet-to-Neumann operator with respect to
Q, = 2\ Q. One can show convergence in at most P — 1 iterations!
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ORASO .
But: evaluation of Agg is as expensive as the original problem.
Lowest order approximation

Agg (d) = ad, a >0,

i.e. Robin condition, leads to optimized Restricted Additive Schwarz iteration of 0
order (oRASO).
m Replace subdomain matrices A, — A, + aMSQ", where M,?Q” is the surface
mass matrix.
B o — oo recovers usual RAS, o — 0 blows up.

1.25
How could we determine the optimal value of 1.00
« efficiently?
, 5 0.75
m Fourier-type analysis (e.g. Gander [4], N
Garay & Szyld), 0.50
m Extrapolation from a coarser version of
the problem, 0.25 7
m Optimization algorithms 0.00 4 ! !
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Numerical Experiments with asynchronous oRASO .

2D Finite Element Poisson on unstructured mesh

64 subdomains

# DoFs: =~ 261,000

Subdomain problem solved using direct factorization

5 samples per value of «

Synchronous communication: non-blocking two-sided MPI

Asynchronous communication: one-sided MPI

Is the asynchronous method converging?

How does the asynchronous iteration compare to the synchronous one?
Observed contraction factor:

Average time per synchronous iteration

. ( Final residual Solve time
Initial residual

(Reduces to contraction per iteration in synchronous case.)

Is the dependence on « different from the synchronous case?

(See also results in Magoules, Szyld, and Venet [5])
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Numerical Experiments with oRASO, sync vs async B

seconds

min residual
—
=
|
©
1
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Local iteration counts for asynchronous oRASO B

number of subdomains

400 450 500 550 600
local iteration count
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min residual

seconds

20 40 60 80 100

14/23



Sanda
) &=
Laboratores.

m To achieve scalability, a mechanism of global information exchange is required.

Synchronous Coarse Grid correction

m Ao coarser version of A, and Ry restriction to coarse DoFs.
m Synchronous additive coarse grid correction to standard RAS:

—(k —(k—1 1 T -1 1 7.1 e —(k—1
g® — gk=b 4 <§¥RprAp R,[,_g_§R0A0 Ro (b—Au( >)

(Similar for oRASO, but lack of a strategy for selection of «, use RAS for now.)

m Communication pattern

1 _ .
SR AY Ro (bfAu(k 1))
~—

. coarse grid solve 2
prolongation residual

m Residual and prolongation require communication between all subdomains and
coarse grid.

m Coarse grid solve can be distributed itself and internally require communication, but
we keep it synchronous.

Asynchronous coarse grid cannot be handled in the same way as the subdomains.
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Asynchronous Coarse Grid correction
On coarse grid

On su

while not converged do

if RHSisReady [p] Vsubdomains p then
Solve Agx = rhsg
for subdomain p do
RHSisReady[p] < False
canWriteRHS, <— True
solutionp < x
solutionIsReady, < True

bdomain p
while not converged do

Compute residual asynchronously

if canWriteRHS, then

Compute local part of coarse grid residual rhsp

rhsg < rhsg + rhsp

canWriteRHS, <— False

RHSisReady[p] < True

Solve local problem

if solutionIsReady, then

Update local iterate with solution, and
solution of local problem (weights (1/2,1/2))

solutionIsReady, < False

else
Update local iterate with solution of local
problem (weight 1)

WE:
National
Laboratores.

Types of variables:
window on remote rank
window on local rank
local variable
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Convergence of the method @

For process 1 < p < P and time instances n > 1, define the asynchronous iteration

o [Ton (J§‘jg,.4.,aﬁ,f’g) ifp € on,
p.,n — — .
Up,n—l pr ¢ On,

where
m o, are the sets of processes performing an update at time n,
® 7, n are the rules for updating the unknowns on process p at time n, and

| GS‘?,), is the data received by process p from process g available at time n.

Theorem (Mimicking Frommer&Szyld [3, 2])

The two-level method converges, provided that A is a non-singular M-matrix and
provided that

m causality principle holds,
m no process will ever stop updating its components,

m no process will ever stop receiving data.
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2D Numerical Experiments, RAS w/ additive coarse grid e,

2D Finite Element Poisson

Weak scaling experiment:
subdomains: 16 64 256 1024
unknowns: 256k 1M 4M  16M

# DoFs per subdomain: = 20,000

# DoFs for coarse grid: ~16 x#subdomains

Subdomain and coarse grid solves using direct factorization.
Coarse grid solve on a single MPI rank.

Haswell partition on Cori @ NERSC, 1 rank/core
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2D, RAS w/ additive coarse grid correction, sync vs async BE.

# subdomains

102 103
n . 1 PR SR T S | 1 L L el
- —— Sync
© e
£ 1.0 1 Async
(v}
&
[R5y S i i .
10—7 L " P S | L L M TSI |
3 1078
= 10794 |— Sync \/,,/\
= é—Async
E10—10_!
T L L v T Tt T T
" 1 P U 1
0.9 A
(Q08'—Sync
07_—Async
" ® o LI LB | A b ¥ ¥ LA I |
106 107
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2D, RAS w/ additive coarse grid correction, sync vs async

min residual

# subdomains

)

102 103
L L L L PR R | L L L PR R |
" —— Sync
2 104 — Async
g 1l
g L
0.5 - =_— i ( . .
T Coarse-grid > subdomain
107 . M | -L—>Loadimba|ance
10-8 3
] =
10-9 4 — Sync \/////\~
10_105 —— Async
A i i ' v LR | i T 1 N
| 1
0.9
S84 — Sync
074 — Async

106

DoFs
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2D, RAS w/ additive coarse grid correction, one subdomain 50% bigger

min residual

# subdomains

102 102
il |
1.5 A
" —— Sync
-g —— Async
9 1.0
2
' * i R | * * R |
o | il
1078 -
.
T I Syne \/\\
10 T —— Async
= L2 |
L L L 1 PR | L L L PR R |
0.9
K
(x 0.8 Syiic
0.74 —— Async
L ’ 1
106 107

DoFs
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3D Numerical Experiments, RAS w/ additive coarse grid

m 3D Poisson equation on a box, structured partitioning.

m Weak scaling experiment:

subdomains: 64 512 4096
unknowns: 2M  16M  128M

m # DoFs per subdomain: ~ 40k

m # DoFs for coarse grid: & one per subdomain

m Subdomain solves using conjugate gradients with incomplete Cholesky

preconditioning, relative tolerance 1/10

m Coarse solve using a single multigrid V-cycle.

m Coarse solve is distributed if the coarse problem is large.

Haswell partition on Cori @ NERSC, 1 rank/core

WE:
National
Laboratores.

|
Built-in possibility of load imbalance: local iterative solves
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3D, RAS w/ additive coarse grid correction e,

# subdomains
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3D, RAS w/ additive coarse grid correction

# subdomains
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Conclusion and Outlook (="

m Asynchronous solvers can compete with their synchronous equivalents.

m Load imbalance is absorbed more easily.

m Need to pick a strategy for selection of optimization parameter « if we want to
use oRASO (and higher order variants).

m Try asynchronous solvers on some application problems.
(Trilinos implementation in the works)

# subdomains
102 103

3 x 10!
2 x 10!

10" o
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residual norm
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