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Motivation

Synchronous iterative methods:

• Alternate computation and communication
High network peak usage, low network usage during computation phases

• Are limited by global synchronization at scale, in particular under load
imbalance due to
• heterogeneous systems,
• unbalanced local solve costs,
• (transient) variability in communication cost

Asynchronous methods

• use the network more evenly,

• absorb load imbalance more easily,

• are more resilient to faults,

• sacrifice deterministic behavior.

Can asynchronous linear solvers be used at scale?
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Restricted Additive Schwarz iteration (RAS)

Solve

I —Au = f in S2 c
Sl u = o on Oa

for k = 1, 2, ... do

Residual r(k) = f Au(k-l)
Solve in parallel

{ -A(6k) = r(k) in Qp,

ds,k) = 0 on OC2p.

Update

u(k) u(k-1) E ope

• {Op} is a partition of unity.

• Careful choice of Op eliminates need for
communication in the update step.

0 ..

Overlapping partition Q = UpQp
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Algebraic version of RAS

Solve

= f.

For k = 1, 2, ...

-,(k)
U = U ERpD„A,;,Rp _ Aci(k-n)

p

• Rp is the restriction to subdomain p,
Ap = RpARTp.

• The diagonal matrices Dp satisfy discrete
partition of unity property

RTpDpRp.

p

• Similar to Additive Schwarz, but does not
require damping to work as an iterative

method.

• Unsymmetric iteration.

Overlapping partition S2 = UpS2t,

ff

NrnetionA
Labownties
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saa
Communication pattern of RAS

u0) = LI 
—.(k— l) 

+ RTpDp Ap-1 Rp V— Aa(k-1))

p Ios—v—cal so/Ive \--s"--"
residual

update

• Computation of the residual requires neighborhood communication (halo
values).

• Local solve and update are communication free.

Synchronous residual computation at iteration k:

Rpv -A,10 = -1)) p,
k 

+ local rq,
k
halo
)

q

Asynchronous residual computation at time t:

— ALP)) =
ptlocal E F(qtp) , halo

rq,p.halo can be out of date since it is computed on subdomain q and needs to be sent
across the network.
—> Asynchronous iteration is not mathematically equivalent to the synchronous one.

Special convergence theory is required. (See work by Szyld, Frommer, etc)
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Realizing asynchronous communication: One-sided MPI

■ Allows MPI ranks to directly read/write exposed memory regions on other
ranks.

■ If the hardware (network interfaces) and MPI implementation support it, can

be significantly faster than two-sided communication.

MPI_Win_create Expose a memory region.

MPI_Put Write into a window.

MPI_Get Read from a window.

MPI_Win_lock / Locks/unlocks a window, exclusive or shared access.
MPI_Win_unlock

MPI_Win_lock_all / Locks/unlocks a window on all processes.
MPI_Win_unlock_all

MPI_Win_f lush Complete all outstanding operations.

After testing the different options, we settled on MPI_Win_lock_all /
MPI_Win_unlock and MPI_Put.
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Convergence detection

Convergence detection in synchronous iterations: IP < E.
For asynchronous methods:

• No global iteration count, no synchronized global residual

• Norms and inner products introduce synchronization points.

Our ad-hoc approach for convergence detection:

• Compute norm of local residual vector 1r,

• Save to window on rank 0

• Rank 0 sums contributions and exposes result in a different window.

• Subdomains retrieve approximate residual norm and terminate if small enough.

Drawbacks:

• Local residual norms are not necessarily monotonically decreasing.

• Might iterate longer than necessary when rank 0 is busy.
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Requirements for use at scale CILotatones

• No GMRES acceleration (inner products and norms are synchronization points)
Need to use the best possible fixed point iteration.

• One-level methods are not scalable
—> Asynchronous coarse grid solve for global information exchange

• Convergence is guaranteed.
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Optimized RAS [1, 6, 7]

Subdomain problem in RAS

-ACO)
( 
dp

k)

The optimal choice would be

= r(k)

= 0

in Q,,,

on 0Qp.

= r(k) in Qp,
(k)

„(k)

AQf,

= 0 on aQp n OQ,
= 0 on aQp \(dp(11

where is the Poincaré-Steklov or Dirichlet-to-Neumann operator with respect to
Qp = Q \ Q„,. One can show convergence in at most P — 1 iterations!

NrnetionA
Labownties
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oRASO

But: evaluation of A is as expensive as the original problem.

Lowest order approximation

(d) ad, a > 0,

i.e. Robin condition, leads to optimized Restricted Additive Schwarz iteration of Oth
order (oRASO).

aQp
• Replace subdomain matrices A,, ceM, , where MrP is the surface

mass matrix.

• CY 00 recovers usual RAS, a —> 0 blows up.

How could we determine the optimal value of

a efficiently?

1.25

1.00

0.75
• Fourier-type analysis (e.g. Gander [4],

Garay & Szyld), 0.50

• Extrapolation from a coarser version of
the problem,

• Optimization algorithms

0.25

0.00
0 50

a

100

11MationA
Labownties
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Numerical Experiments with asynchronous oRASO

• 2D Finite Element Poisson on unstructured mesh

• 64 subdomains

• # DoFs: 261,000

• Subdomain problem solved using direct factorization

• 5 samples per value of a

• Synchronous communication: non-blocking two-sided MPI

• Asynchronous communication: one-sided MPI

• Is the asynchronous method converging?

• How does the asynchronous iteration compare to the synchronous one?
Observed contraction factor:

Average time per synchronous iteration

Final residual Solve time

Initial residual)

(Reduces to contraction per iteration in synchronous case.)

• Is the dependence on a different from the synchronous case?

(See also results in Magoulès, Szyld, and Venet [5])

NrnetionA
Labownties
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Numerical Experiments with oRASO, sync vs async

20

20

40

40

60

a

60

a

80

80

100

100

0 ..

12/23



Local iteration counts for asynchronous oRASO
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Numerical Experiments with oRASO, one subdomain 50% bigger
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Synchronous Coarse Grid correction

• To achieve scalability, a mechanism of global information exchange is required.

• Ao coarser version of A, and Ro restriction to coarse DoFs.

• Synchronous additive coarse grid correction to standard RAS:

U = U
—0) —0-1) (

+ 
2

p

(Similar for oRASO, but lack of a strategy for selection of ce, use RAS for now.)

• Communication pattern

1
—
2
Ro Ao i Ro (6— Aci(k 1))

\--v.." coarse grid solve
prolongation residual

RpTDAT, 1Rp + 121-0A(T1Ro) (r3 — Ad(k-1))

• Residual and prolongation require communication between all subdomains and
coarse grid.

• Coarse grid solve can be distributed itself and internally require communication, but
we keep it synchronous.

Asynchronous coarse grid cannot be handled in the same way as the subdomains.
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Asynchronous Coarse Grid correction
On coarse grid

while not converged do
if RHSisReady0 [12] Vsubdomains p then

Solve Aox = rhso
for subdomain p do

RHSisReady0 [p] <— False
canWriteRHSp True
solutionp x
solutionIsReadyp F True

On subdomain p
while not converged do

Compute residual asynchronously
if canWriteRHSp then

Compute local part of coarse grid residual rhsp
rhso F rhso rhsp
canWriteRHSp F False
RlisisReady0 [p] <— True

Solve local problem
if solutionIsReady, then

Update local iterate with solutionp and
solution of local problem (weights (1/2, 1/2))
solutionIsReadyp False

e se
Update local iterate with solution of local
problem (weight 1)

NrnetionA
Labownties

Types of variables:

window on remote rank

window on local rank

local variable
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Convergence of the method

For process 1 < p < P and time instances n > 1, define the asynchronous iteration

TP (tliP„ •
ap,n —

up,n-1

P)), up,„ if p E an,

if p crn,

where

• a,, are the sets of processes performing an update at time n,

• Tp,n are the rules for updating the unknowns on process p at time n, and

• un— is(P) the data received by process p from process q available at time n.n 

Theorem (Mimicking Frommer&Szyld [3, 2])

The two-level method converges, provided that A is a non-singular M-matrix and
provided that

• causality principle holds,

• no process will ever stop updating its components,

• no process will ever stop receiving data.

t'almatones
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2D Numerical Experiments, RAS w/ additive coarse grid

■ 2D Finite Element Poisson

■ Weak scaling experiment:
subdomains: 16 64 256 1024

unknowns: 256k 1M 4M 16M

■ # DoFs per subdomain: ,,-:-,' 20,000

■ # DoFs for coarse grid: e,-_,-'16x#subdomains

■ Subdomain and coarse grid solves using direct factorization.

■ Coarse grid solve on a single MPI rank.

■ Haswell partition on Cori @ NERSC, 1 rank/core
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2D, RAS w/ additive coarse grid correction, sync vs async
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2D, RAS w/ additive coarse grid correction, sync vs async
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2D, RAS w/ additive coarse grid correction, one subdomain 50% bigger
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3D Numerical Experiments, RAS w/ additive coarse grid

• 3D Poisson equation on a box, structured partitioning.

• Weak scaling experiment:
subdomains: 64 512 4096
unknowns: 2M 16M 128M

• # DoFs per subdomain: 40k

• # DoFs for coarse grid: one per subdomain

• Subdomain solves using conjugate gradients with incomplete Cholesky
preconditioning, relative tolerance 1/10

• Coarse solve using a single multigrid V-cycle.

• Coarse solve is distributed if the coarse problem is large.

• Haswell partition on Cori @ NERSC, 1 rank/core

Built-in possibility of load imbalance: local iterative solves

t'ahatatones
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3D, RAS w/ additive coarse grid correction
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3D, RAS w/ additive coarse grid correction
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Newel

Conclusion and Outlook 
C) 

tabonrones

• Asynchronous solvers can compete with their synchronous equivalents.

• Load imbalance is absorbed more easily.
• Need to pick a strategy for selection of optimization parameter a if we want to

use oRASO (and higher order variants).
• Try asynchronous solvers on some application problems.

(Trilinos implementation in the works)
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