20
21
22
23
24
25
26
27
28

29

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 10583C

Fine-Grained Analysis of Communication Similarity between
Real and Proxy Applications

Al
a@a.com
Al

Al
a@a.com
Al

ABSTRACT

Understanding the HPC applications behavior is necessary to eval-
uate the HPC system hardware and software for exascale networks
and beyond. Most High-Performance Computing (HPC) applica-
tions depend heavily on communication to transfer data between
running processes. Therefore gaining insight into the application
communication performance helps to determine how well set of
applications are related to each other. In this paper, we study how
well a cumulative method shows representations of the HPC appli-
cations. This method ...

KEYWORDS

Workload characterization; Proxy applications; Performance evalu-
ation; Big data

ACM Reference Format:

A1, Al, Al, and Al. 2019. Fine-Grained Analysis of Communication Similar-
ity between Real and Proxy Applications. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
nnnnnnn.nnonnnn

1 INTRODUCTION

In previous work [1], we explored how the communication behavior
of some proxy applications related to their respective real, or par-
ent, application. Proxy applications, sometimes called mini-apps or
proxies, are smaller, easier-to-use programs that are used in myriad
ways, to evaluate systems, find hardware bottlenecks, and perform
algorithmic or system design exploration. In that work, we used
two forms of aggregate data: aggregate MPI function data from
mpiP [11], and aggregate pairwise communication data from Cray-
Pat [?]. In both cases, the quantitative data represented behaviors
that were totaled over the lifetime of the execution. This aggregate
data was collected both from the real and proxy applications, and
then compared using several novel metrics that we defined.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Al
a@a.com
Al

Al
a@a.com
Al

Using aggregate metrics ignores the possibility that the proxy
application might only be representing part of the parent applica-
tion. Sometimes this is true; for example, SW4 and SW4lite actually
share a common codebase, and our metrics ended up showing a
very high similarity between them. On the other hand, HACC, a
cosmological code, has a related proxy called SWFFT, which by
its name indicates that it is focused only on the FFT portion of
the computation; our metrics thus showed less correspondence be-
tween these. Proxies and parents could also have similar aggregate
communication behavior, but might peak or stress the underlying
interconnect in different ways and at different times, thus causing
performance differences that are hard to understand.

This leads us to investigate the correspondence of real and proxy
applications in their communication behavior over time. In this
paper we explore an evaluation of various quantitative metrics over
the time-varying communication behavior of applications. We use
three pairs of real and proxy applications, one of which is different
from the ones we used in [1]. The two previously used pairs are
LAMMPS and ExaminiMD, and HACC and SWFFT. The new pair is
the real application CTH [?], a very large ... that is heavily used, and
the proxy application is miniAMR [?], a proxy application meant
to mimic a typical computation using adaptive mesh refinement,
and developed with CTH particularly in mind.

The research question that is thus explored here is: can we find
meaningful quantitative ways to analyze the time-varying commu-
nication behavior of parent and proxy applications in a way that
will give us insight into their dynamic correspondence in terms of
the communication they do during execution?

The contributions of this paper thus are: an exploration and
presentation of the dynamic communication behaviors and rela-
tionships between three parent/proxy application pairs; an the
evaluation of several different metrics over the time-varying com-
munication behavior that are potentially useful for comparing real
applications to their proxy counterparts; and a resulting improve-
ment to miniAMR that makes it more closely match its parent CTH.
During the course of the research described here, it became clear
that CTH and miniAMR had far more interesting dynamism in their
communication behavior than did the other parent/proxy pairs, and
so while we do present results for the other pairs, most of the con-
tent of this paper describes CTH and miniAMR, and the results for
them.

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

59

73
74
75
76
77
78
79
80
81
82
83
84

85

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

106
107
108
109
110
111
112
113
114
115

116

117
118
119
120
121
122

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163

164

166
167
168
169
170
171
172
173

174

Conference’17, July 2017, Washington, DC, USA

2 BACKGROUND

In part of our previous work [?] we formulated and then evalu-
ated metrics that captured aspects of correspondence between the
communication behavior of two applications. We specifically were
concerned with comparing the communication behavior of a proxy
application with the parent application that it intends to represent.
For rigorous and detailed descriptions of these metrics, please refer
to [?].

Important to this paper are the correlation metrics we devised.
For quantitative data, we captured the total number of messages
sent from a sending process (rank) to a receiving process (rank) dur-
ing the execution of the application. This gives us a 2-dimensional
matrix of message counts, with the sending and receiving process
id’s as the row and column indices. In comparing parent and proxy
applications, hopefully most nonzero entries are nonzero in both
the parent and proxy matrices, but there will be some entries that
are nonzero in the parent matrix and zero in the proxy matrix, and
some that are zero in the parent and nonzero in the proxy.

We formed three different data vectors from these matrices that
defined three different views of the data:

e Parent view: keeping all elements in the proxy and parent
vectors that are nonzero elements of the parent application,
and removing from the proxy any nonzero elements not
in the parent set; the proxy vector will have zero elements
where the parent has a nonzero element but it did not.

e Proxy view: keeping all elements in the two vectors that are
nonzero elements of the proxy application; other nonzero
parent elements are removed, and zero elements in the parent
are kept where the proxy has nonzero elements.

o Full view: keeping all elements that are nonzero elements
in either the proxy or the parent, and augmenting both with
zero elements where needed.

Thus, the first focuses on how the proxy might match the observed
parent behavior, the second focuses on how much of the proxy
actually matches parent behavior, and the last covers the full extent
of both behaviors and how they might correspond.

In that work we defined and evaluated descriptive statistics (per-
cent overlap) and correlations (Pearson and Spearman) over these
data sets. Note interesting results?...

3 METHODOLOGY

Write about data analyses used here.

4 EXPERIMENT SETUP

4.1 Applications

4.1.1 HACC and SWFFT. The Hardware Accelerated Cosmology
Code (HACC) [2] is an N-body framework that simulates the evo-
lution of mass in the universe and its structure within the context
of dark matter and dark energy. It uses particle mesh techniques,
splitting the force calculation into a grid-based spectral particle
mesh component for medium to long-range interactions and di-
rect particle-to-particle solvers for short-range interactions. The
long-range solvers implement an underlying 3D FFT that is domain-
decomposed to 2D. SWFFT [3] is the 3D FFT that is implemented in

A1, A1, A1, and A1

HACC. Since this FFT accounts for a large portion of the HACC exe-
cution time, SWFFT serves as a proxy for HACC. SWFFT replicates
the transform and is meant to be representative of the computation
and communication involved.

175
176
i F g
178
179
180
181

4.1.2 LAMMPS and ExaminiMD. LAMMPS (Large-scale Atomic/Moleculas

Massively Parallel Simulator) [6] is a classical molecular dynam-
ics code that models particles in solid, liquid, and gas states. A
particle can range from a single atom to a large composition of
material. LAMMPS integrates Newton’s equations of motion to
model particle interaction, using lists to track neighboring parti-
cles. It implements mostly short-range solvers, but does include
some methods for long-range particle interactions. Like LAMMPS,
ExaMiniMD [10], which is a proxy for LAMMPS, uses spatial do-
main decomposition. But compared to LAMMPS, ExaMiniMD’s
feature set is extremely limited, and only three types of interactions
(Lennard-Jones/EAM/SNAP) are available. The SNAP interaction is
a much more complicated and computationally expensive potential
that attempts to approach quantum chemistry accuracy when mod-
eling metals and other materials. ExaMiniMD and LAMMPS both
use neighbor lists for the force calculation. ExaMiniMD is intended
to represent both the computation (including memory behavior)
and communication that is implemented in LAMMPS.

4.1.3 CTH and miniAMR. CTH is a multi-material, large deforma-
tion, strong shock wave, solid mechanics code developed at Sandia
National Laboratories [?]. CTH has models for multi-phase, elastic
viscoplastic, porous and explosive materials, using second-order
accurate numerical methods to reduce dispersion and dissipation
and produce accurate, efficient results.

MiniAMR was developed to study CTH when it is run using
adaptive mesh refinement, or AMR [?]. Both CTH and miniAMR
use an octree based AMR scheme, where each processor has a
number of blocks, each of which has a few hundreds of cells. When
a region needs to be refined, a block is replaced with 8 blocks, each
half the size of the original block in each dimension, but with the
same number of cells. As the calculation progresses, the number
and placement of these blocks in the calculation can change.

In terms of communication, each block has to communicate
with its neighboring blocks in the mesh, so each process ends
up performing communication within the process as well as to
some number of neighboring processes, which can change as the
simulation progresses.

In this study, we use two different input simulations for CTH and
miniAMR. The first is a simulation with 4 spheres moving through
the mesh in such a way that they do not interact and therefore have
no distortion. The mesh is refined on the surfaces of the spheres
and the refinement of the mesh from each sphere will interact with
the refinement from the others. The second problem is a ball hitting
a plate. We refine the mesh around the ball as it interacts with the
plate as well as on the shock wave moving through the plate. The
shock wave is modeled in miniAMR as an expanding hemisphere.

4.2 MiniAMRZ: a Modified miniAMR

Because this study was focused on time varying communication
behaviors, we quickly saw differences between CTH and miniAMR

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
21
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

259
260
261
262
263

264

266
267
268
269
270

271

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

294

301
302
303
304
305
306
307
308
309
310
311

312

Fine-Grained Analysis of Communication Similarity between Real and Proxy Applications

that was due to the ways that they do mesh refinement. An inves-
tigation of these differences showed that there are three factors
which contribute to the differences, each relating to the implemen-
tation of the Recursive Coordinate Bisection (RCB) [?] algorithm
in the load balancing phase. For each step of the RCB algorithm,
a direction and a number of divisions are chosen. The blocks are
sorted in that direction and divided into nearly equal sets based
on their position in that direction, and the ranks are also divided.
Divisions are based on a prime factorization of the number of MPI
ranks. Each of the sets of blocks is assigned to a set of ranks and
the process is repeated until each rank has a set of blocks assigned
to it.

The first factor is that CTH uses the Zoltan load balancing li-
brary [?] which has a generalized version of the algorithm, while
the algorithm in miniAMR is more taliored to a rectilinear mesh
where block centers are constrained to be discreet values. The effect
is that with CTH, when there are several blocks that lie along the
cut between groups of blocks that will be assigned to one processor
set or another, the blocks are effectively assigned to one set or
the other. In miniAMR, those blocks are assigned based on their
position in the cutting plane so that blocks that are nearby to each
other are more likely to be assigned to the same set.

The second factor is that CTH only allows a certain percentage
of blocks to be moved during any refinement step in order to limit
the size of the messages that are being sent during block reassign-
ment. This results in random blocks not being moved to the proper
processor and has the effect of a processor communicating with
more other processors.

The third factor is that the Zoltan implementation of RCB in CTH
allows the cut direction for each group of blocks to be determined
when the cut is being made, while miniAMR determines the order
of cuts once at the beginning. When the cut direction is changed
for a group of blocks, this can cause more blocks to assigned for
moving, but due to the limit in CTH, not all of those blocks will be
moved.

In order to try to make the communication patterns of miniAMR
closer to that of CTH, we modified miniAMR, creating a version we
call miniAMRZ, in reference to making it better mimic the Zoltan-
based behavior of CTH. Selectable options allow this modified
codebase to run as miniAMR or miniAMRZ. MiniAMRZ will do
the following: all of the blocks that fall on a cut will be distributed
to one side of the cut or the other; a limit can be specified for
the maximum number of blocks moved after load balancing; and
miniAMRZ allows the RCB algorithm to change the directions of
the cuts.

In this study we use both the standard miniAMR, and our mini-
AMRZ. Uncovering these differences was directly due to looking at
the data collected during the course of this study, and so miniAMRZ
is a resulting contribution of this work.

4.3 Instrumentation

In our previous work we collected total aggregate message counts
for the lifetime of the program, using the CrayPat [?] tool. Our inter-
est in this paper is in refining this into looking at the time-varying
communication behavior of an application. Thus, we desired to

Conference’17, July 2017, Washington, DC, USA

collect data during the execution rather than just total data at the
end.

The CrayPat tool does have the ability for an application to turn it
on and off during execution, but not to actually capture consistently
sampled values during the execution. For the applications HACC,
SWEFFT, Lammps, and ExaminiMD, we did instrument the code to
run CrayPat for one communication step in each execution, and
then we ran executions that would capture one unique step each
time. This was a very costly process and limited the amount of data
we could collect for these applications.

In order to look at the communication differences between CTH
and miniAMR, we instrumented the codes to output the commu-
nication matricies at times throughout the execution of the code.
For CTH, we counted all of the communications on each rank for
the first communication after a refinement step, since once there
is a new communication pattern it remains in effect until the next
refinement step. We outputed that information into a file for each
refinement step and were able to post process the communication
patterns for the entire run. For miniAMR, we are able to look at
the data structures that are present after each refinement step and
determine and output the communication pattern that will be used
for the next few timesteps. We likewise were able to output that
information into files to compare to those from CTH.

4.4 Input Problem Details

Something for LAMMPS/XMD and HACC/SWFFT??

For the 4 spheres problem in CTH and miniAMR, we ran 7819
timesteps for 5 e-6 seconds of simulation time with 2607 mesh
refinement steps. MiniAMR is complex enough that, given the
simple nature of this problem, both codes end up with the spheres
in the same position. We estimated, by observation, that number of
blocks in the problem differs between CTH and miniAMR by 2.5%
at most.

For the ball and plate problem, CTH and miniAMR run for 3642
timesteps and have 1214 mesh refinement steps. This problem is
more complex in its behavior, but fairly reproducible in miniAMR.
The shock wave is in the plate and does not interact with anything,
so there is not too much distortion. Thus the shock wave behavior
in CTH is fairly reproducible in miniAMR, but the distortion of the
ball and crater will be somewhat different.

Figure 1 shows the resulting simulation state from miniAMR on
the 4 spheres problem, while Figure 2 shows a late simulation state
from CTH for the ball and plate problem. MiniAMR handles the
non-interacting spheres well but is much less accurate on the ball
and plate distortion seen in the CTH result. The adaptive mesh can
be seen in the miniAMR figure.

4.5 Platforms

Someone read and check this...

All experiments were performed on Mutrino, a small Cray XC40-
based cluster at Sandia National Laboratories, with nodes having
Intel Haswell processors and the cluster having a Cray Aries inter-
connect.

For LAMMPS and ExaminiMD, ...

For HACC and SWFFT,

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
387
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

Conference’17, July 2017, Washington, DC, USA

)

i

i
i
i

Z(mm)

Figure 2: CTH Simulation state for Ball & Plate.

For CTH and miniAMR, all executions were done with 128 ranks
over 4 nodes, and with no OpenMP being used.

5 RESULT AND ANALYSIS

Figure 3 shows the basic overlap relations in the communication of
CTH and the two miniAMR versions. The left two groups show the
percentage of messages that occur in the parent that also occur in
the proxy (leftmost) and that occur in the proxy and that also occur
in parent (second leftmost). The two right-side groups are similar,

A1, A1, A1, and A1

® Sphere, CTH/miniAMRZ
= Ball, CTH/miniAMRZ
® Sphere, miniAMRZ/miniAMR

%0

80

70

60

40

30

20

10 I
0

Proxy View, #msg

 Sphere, CTH/miniAMR
Ball, CTH/miniAMR
Ball, miniAMRZ/miniAMR

% Overlap
o
g

Parent View, #msg Proxy View, (src,dest) Parent View, (src,dest)

Figure 3: Communication overlap relations.

07
03
: | ‘ | ‘ |
01
0

Real padded by proxy, Proxy Cor

Realfull augmentation,Proxy full augmentation Proxy padded by real Cor

Figure 4: PearsonCorrProxyRealMsgPair.pdf

except over communicating pairs (boolean, whether they communi-
cated or not) rather than message counts. The percentages of proxy
in parent are all very high, indicating that almost all messages that
the proxy communicates match some communication in the parent.
The proxy-in-parent pair bars are slightly lower, indicating that
there are a few low-count communicating pairs in the proxies that
are not in the parent. However, the parent-in-proxy view is very
different, indicating that there is parent communication behavior
that is not reflected in the proxy. In terms of message count (left-
most), most bars are above 60%, showing that most messages have
correspondence in the proxy, but when looking at communicating
pairs (right middle), most bars are very low (10-30%), indicating
that there are large numbers of process pairs that communicate in
the parent but not in the proxy (albeit with low message counts).
The exception to this is CTH and miniAMRZ for the ball&plate
simulation; here miniAMRZ has about 98% correspondence to mes-
sages, and about 88% for communicating pairs. miniAMRz is also
significantly more correspondent to CTH that miniAMR for the
4-sphere simulation.

Figure 4 and Figure 5 show the Pearson and Spearman correla-
tions over different views of parent-proxy relations. Full augmen-
tation means data includes all process pairs that have non-zero
message counts in either the parent or the proxy; where a pair oc-
curs in one but not the other, zero is entered for the corresponding
message count. Proxy-based view means that process pair data is
kept only for those pairs who have nonzero message counts in the
proxy; parent pairs outside of this are discarded, and zero is entered
in parent data for pairs that occur in the proxy but not in the parent.

510
511
512
513
514
515
516
17
518
519
520
521
522
523
524
525
526
527
528
529
530

531
532
533
534
535
536
537
538
539

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

561

566

Fine-Grained Analysis of Communication Similarity between Real and Proxy Applications

Real full augmentation Proxy full augmentation Real padded by pr oy padded by real Cor

Figure 5: SpearmanCorrProxyRealMsgPair.pdf

0.9

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

cth/miniAMRZ cth/miniAMR cth/miniAMRZ

Cosine Similarity

cth/miniAMR

4 Sphere Ball Plate

Figure 6: CosineSimilarity.pdf

Real-based view means that process pair data is kept only for those
pairs who have nonzero message counts in the real application;
proxy pairs outside of this are discarded, and zero is entered in
proxy data for pairs in the parent but not in the proxy.

Rather than just the overall percentages as the earlier figure
showed, the correlations take into account whether message counts
are similar over different pairs. Pearson is essentially a linear corre-
lation, while Spearman can handle non-linear correlation effects. To
me it looks like the Pearson figure is wrong — are we sure that there isn’t
any copied-excel formula problems here??? Figure 4 shows that the
proxy-parent pairs have significant correlations, with the 4-sphere
simulations showing distinctly higher correlations, and miniAMRZ
showing distinctly higher correlation than miniAMR. However, be-
cause Figure 5 shows quite lower Spearman correlations across this
same data, the simpler Pearson might be be suffering from effects
that do not perturb the linear correlation computation. We should
look at the data and visually decide...

We also evaluated our data using the cosine similarity metric,
shown in Figure 6. Cosine similarity ignores the absolute mag-
nitudes of the data values and calculates the angle of difference
between the data as vectors, the directions being determined by the
relative magnitude of the data values. The figure shows significant

Conference’17, July 2017, Washington, DC, USA

| i
f ﬂh’vhﬂﬂ'J"\WM!f“rw%’,\mm“ W Wy Wr WV M “" M” Mﬁ'm

Figure 7: PearsonSimilarityPhasesBall.pdf

‘ I
AR I SN
) o MW\‘V"'\‘W'lﬂw "‘W‘wull'ﬂ*‘l’”‘.i“\“"ﬁ'“"w 'I‘IM‘L“} "\"‘.“ "‘ i

‘\' H{HV'W wa ‘\up M R i

Figure 8: CosineSimilarityPhasesBall.pdf

similarity between the parent and proxies and, consistent with the
other correlations, shows the 4-sphere simulations as more similar,
and miniAMRZ more similar to CTH than miniAMR.

After these aggregate metrics and comparisons, we now look
at the communication behavior over the execution lifetime of the
applications. As noted before, we captured the communication data
at every refinement step of the applications, and the analyses below
use this data.

Figure 7 shows the Pearson correlation of step data between
CTH and the proxies for the ball&plate simulation. Full augmen-
tation?? Interestingly, the per-step correlation is very low, always
much lower than the overall correlation of about 0.66 (miniAMR)
and 0.73 (miniAMRZ) from the previous figure. What this means is
that even though they are doing the exact same number of timesteps
and refinement steps, the communication of the identically offset
intervals does not need to, and indeed does not, match. Could we
have an off-by-one error? Also, miniAMRZ, which is in aggre-
gate more correlated to CTH, is lower in per-step correlation than
miniAMR.

Figure 8 shows the cosine similarity of the same data as the
previous figure (step data for ball&plate simulations). Again, the per-
step similarity is significantly lower than the aggregate similarity,
and miniAMRZ is less similar, per step, than miniAMR.

Figure ?? shows the cumulative cosine similarity for the ball&plate
simulations, where similarity is computed not per step but over the
data from the beginning to the current step under consideration.
Thus by the end it reachs the aggregate similarity measure. Our
interpretation of this is that the applications do not quite do refine-
ment in a lock-step similar fashion, but as the simulation proceeds
the mesh refinement looks more similar in the proxies and parents

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

669

671

672

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
71
712
713
714
715
716
717
718
719
720
721
722
723
724
725

726

Conference’17, July 2017, Washington, DC, USA

Figure 9: CosinePhasesAccumBall.pdf

\ [HLAE
‘. il 1\\ \ \‘
WQJ A

Figure 10: CosineSimilarityPhases4Sph.pdf

than any individual step indicates. MiniAMR rapidly reaches its
highest similarity to CTH, while miniAMRZ takes longer but is
more similar to CTH within less than half the execution time.

Figure 10 shows the per-step cosine similarity for the 4-
shpere simulations. If we are using this we need more fig-
ures...

6 RELATED WORK

In our prior work, we noted at that time that there was little related
work done on characterizing the similarity in communication pat-
terns of parallel applications that use MPIL. This is still the case and
there is only one new piece of work that extends prior work in this
area.

Ma et al. [5] present the only other work we have identified on
characterizing similarity in MMPI communication patterns. Their
method uses a linear correlation coefficient on ranked metric values
in conjunction with a graph isomorphism metric. They construct
a graph based on communicating pairs (source, destination), then
use graph isomorphic degree to determine the similarity between
graphs. The metrics they use for correlation are temporal, which
reflects message rates, volume for representing message size, and
spatial that captures communication locality in terms of communi-
cating pairs. Their results are mixed with three out of six benchmark
comparisons showing strong similarity and three out of six show-
ing weak, but some similarity. In contrast, our proposed method is
much simpler, using data directly gathered from mpiP. We do non-
linear correlation, which we believe is key, and use real applications
in addition to proxies (similar to benchmarks).

A1, A1, A1, and A1

The work presented in [4, 9] focuses on matching application
communication patterns to a library of commonly observed pat-
terns. Their methods are based on pattern matching and they are
not focused on understanding pattern similarity (although their
method could be applied to this with some extension). The work

n [9] has been recently extended [7, 8]. They improved it in [8] by
representing the communication matrix (mpiP data—source, desti-
nation, number of messages, bytes transferred) as an augmented
communication graph then doing search space pruning based on
a library of communication patterns to determine patterns that
comprise the particular communication. As noted, this work could
be applied to the problem of communication pattern similarity and
will be leveraged in our work in the future. In [7] they discuss how
to apply deep learning methods in their methodology.

7 CONCLUSION AND FUTURE WORK

In our prior work, we presented an exploration into quantifying a
comparison of cumulative communication characteristics between
parent and proxy. This work extends that methodology to include
comparison of time-varying communication behavior using pair-
wise communication data easily collected with mpiP. We define
metrics that capture how much of one application matches the
other and we use correlation metrics over the message counts of
communicating pairs to further quantify this relationship. We found
that for applications with dynamically driven communication char-
acteristics such as those that use adaptive mesh refinement, the
time-varying behavior of the parent and proxy can be quite dif-
ferent, rendering the use of cumulative data potentially mislead-
ing. MAYBE ADD MORE QUANTITATIVE STATEMENTS ONCE I
LOOK MORE CLOSELY AT THE DATA.

Although this work reveals the importance of examining the
differences in time-varying behavior, it also exposes new ques-
tions/issues that need to be addressed. The first pertains to the
fidelity of proxy apps. In this team, we have over 30 years of ex-
perience with CTH and the author of miniAMR. miniAMR was
originally intended to faithfully model only the communication
in CTH. We see from our data that in spite of expertise, we have
a proxy that has different communication characteristics with re-
spect to its parent. We believe this is because miniAMR does not
do exactly the same computation that is done in CTH, and since
the communication is dependent on the dynamic computation, the
communication is different. Therefore, for applications that are
characterized by dynamic communication, it may be very impor-
tant to ensure that the same computations are done in both the
proxy and the parent. At a minimum, extreme care and caution
must go into understanding proxy intent in terms of which spe-
cific parent behavior it models and developers must give adequate
attention to modeling these behaviors accurately. This implies an
iterative development-measurement cycle to ensure accurate repre-
sentativeness. Intuition is not good enough.

Secondly, although the time-varying communication behavior in
CTH and miniAMR do not closely match, the underlying behavior
at the network level may be the important characteristic we should
be trying to mimic in the proxy. We need to address the question
as to how the communication behavior we have observed differs

727
728
729
730
731

746

751

753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
771
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855

859
860
861
862
863

864

Fine-Grained Analysis of Communication Similarity between Real and Proxy Applications

or matches at the hardware level. For example, do these two appli-
cations demonstrate the same behavior with respect to network
congestion, traffic at the NIC, point-to-point message latency? This
is our next step for future work.

8 ACKNOWLEDGEMENT

This research was supported by the Exascale Computing Project
(ECP), Project Number 17-SC-20-SC, a collaborative effort of two
DOE organizations, the Office of Science and the National Nuclear
Security Administration, responsible for the planning and prepara-
tion of a capable exascale ecosystem including software, applica-
tions, hardware, advanced system engineering, and early testbed
platforms, to support the nation’s exascale computing imperative.
Sandia National Laboratories is a multimission laboratory man-
aged and operated by National Technology and Engineering So-
lutions of Sandia LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE- NA0003525.

REFERENCES

[1] O. Aaziz, J. Cook, J. Cook, and C. Vaughan. Exploring and quantifying how com-
munication behaviors in proxies relate to real applications. In 2018 IEEE/ACM
Performance Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems (PMBS), pages 12-22, Nov 2018.

Conference’17, July 2017, Washington, DC, USA

[2

—

Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel, Adrian Pope,

Katrin Heitmann, Kalyan Kumaran, Venkatram Vishwanath, Tom Peterka, Joe

Insley, David Daniel, Patricia Fasel, and Zarija Luki¢. Hacc: Extreme scaling

and performance across diverse architectures. Commun. ACM, 60(1):97-104,

December 2016.

[3] https://xgitlab.cels.anl.gov/hacc/SWFFT. Swift (hacc).

[4] Darren J. Kerbyson and Kevin J. Barker. Automatic identification of application
communication patterns via templates. In ISCA PDCS, 2005.

[5] C.Ma, Y. He, and N. Xiong. Mpacp: An approach for automatic matching of

parallel application communication patterns. In 2008 IEEE Asia-Pacific Services

Computing Conference, pages 1517-1522, Dec 2008.

Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. 7.

Comput. Phys., 117(1):1-19, March 1995.

Philip C. Roth. Improved Accuracy for Automated Communication Pattern

Characterization Using Communication Graphs and Aggressive Search Space

Pruning. Lecture Notes in Computer Science, 11027:38-55, April 2019.

Philip C. Roth, Kevin Huck, Ganesh Gopalakrishnan, and Felix Wolf. Using Deep

Learning for Automated Communication Pattern Characterization: Little Steps

and Big Challenges. Lecture Notes in Computer Science, 11027:265-272, April

2019.

Philip C. Roth, Jeremy S. Meredith, and Jeffrey S. Vetter. Automated characteri-

zation of parallel application communication patterns. In Proceedings of the 24th

International Symposium on High-Performance Parallel and Distributed Computing,

HPDC ’15, pages 73-84, New York, NY, USA, 2015. ACM.

[10] Aidan P. Thompson and Christian Robert Trott. A brief description of the kokkos

implementation of the snap potential in examinimd. 11 2017.

[11] Jeffrey S. Vetter and Michael O. McCracken. Statistical scalability analysis of

communication operations in distributed applications. In Proceedings of the Eighth

ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming,

PPoPP ’01, pages 123-132, New York, NY, USA, 2001. ACM.

G

[

7

8

[t

[

—

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

