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Super Lab for the Futuristic Grids

Collaborative research infrastructure for
« Large-scale systems
« Unique (P)HIL experiments

« Cutting-edge interdisciplinary research SRWTH
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RT Super Lab & Next-Gen Global Grids

» Collaboration between USA and EU institutions enables research groups to jointly
investigate innovative solutions such as a direct submarine HVDC cable between
USA and EU within the concept of Global Power Grid

« RT-Super Lab environment exploits complementary strengths and knowledge of
USA and EU institutions that is particularly beneficial in this research context

&

lllustration of a possible Global Grid = = ® “ -

Jones, Lawrence E. Renewable Energy Integration: Practical Management of Variability, Uncertainty and Flexibility In Power Grids. Burlington: Academic Press, 2014.




Sandia National Laboratories (SNL)

C SNL 1s a multi-mission DOE A

R&D center with headquarters in
Albuquerque, New Mexico, USA.
* Conducting energy technology
research, development and
validation since the 1970’s.
* World-class R&D platforms

Sandia
National
Laboratories
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Distributed Energy Resources and Energy Storage
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* Grid & PV simulators, PV & storage converters, gensets, demand response
= Storage: 1 MW-Hr battery, 1 MW Energy Storage Test Pad

= Control and power HIL (Opal-RT, Typhoon HIL) and Emylytics (SCEPTRE)

Secure Scalable Microgrid (SSM) R&D Platform

Microgrid #1

Master Controller

* HiL-based for control and HW optimization
* Highly customizable generation, storage, i

loads, & network components, DC/AC

Energy Storageivibdule

Emulytics™/SCEPTRE

Live Virtual

* Integrated HIL and Emulytics capability

* Controls, protection, actuators, & network
device for a variety of energy systems




Sandia RE/DER Integration R&D Platform @Lﬁ&dt'es

Communications & Optimization

National Infrastructure for Networked Energy Technology

Simulation & Analysis Center

A source of national expertise to address critical Coordii d C¢ ications, Controls

infrastructure protection research and analysis. for Distributed Systems, Optimal Dispatch,

Protection & Reconfiguration, as well as
Prognostics and Decision Support.

Mesa del Sol

Commercial-scale microgrid with state-
of-the-art energy management system for
control and forecasting research.

Scalable Secure Microgrid

Advanced AC/DC microgrid research
platform for multi-agent controls and
RE/DER integratio.

............... : Civilian Cyber
Control/visualization center
for all grid/cyber assets

Distributed Energy
Technologies Laboratory

Interoperable distributed energy
resource test bed and SCADA system
for vulnerability assessments.

Scaled Wind Farm

Emulytics & Threat Analysis Technology (SWiFT)

High Performance
Computing
World-class parallel computing tools

and algoritym applied to complex
and high-order network problems

e in loop simule

Full-scale wind turbine research
Control System and SCEPTRE.

facility for interoperable grid-
support control experimentation.

. Integrated renewable and DER, cybersecurity platforms for analysis,
optimization and validation of advanced energy systems

s Dedicated XNet research network, Virtual Power Plant (VPP) controls )




RT SuperLab Contribution — SNL @ o

 Distribution System with high-share of PV generation (at DETL)
 Demonstrate PV supporting system stability via Q(v,t) and P(f,t)
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Q\\ \ b mwaho National Laboratory

Real-time Power and EnergyLaboratory —\Research Principles

Safe and efficient integration of grid
devices to existing power grid

Research on pumped-storage hydro for integrating
multiple run-of-the-river power plants

Communication

Research on concentrated solar
power plants

Pumped Storage
Hybrid

- Energy
Systems
Energy Conversion Integration

IMPACTS & TAKEAWAYS

First «  Physics model-based approach
S towards solving power grid
7 Researc «  Hydrogen production to enable

better demand response and grid
stability

4 MODELS BASE / ENERGY / Integration of » Electrical-Mechanical-Thermal-
ON REAL- CONVERSION AND *  Electrical Vehicles communication cosimulation
WORLD DATA IN STORAGE Supercapacitors capability
REAL-TIME o ThEmTEl Flywheels
Physics-based Mechanical Pumped Storage * Transmission, Distribution,
Modeling Elesiiesl Hydro Communication, and

Batteries and
Electrolyzers To
the power Grid

Communication co-simulation

Novel protection
schemas and
algorithms

Chemical
Nuclear

INL Power & Energy Group focuses on investigating power-grid problems using real-time models, develop advanced controls
and strategies to mitigate the identified problems, and de-risk integration of variety devices to the power grid.
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Unifying core capabiiities

Real-Time Digital Simulation of Power Systems S CHUR S patl
— » Facilities for accurate real-world model
I ——— Control Systems and Advanced development for power system dynamic
L - ol
resolution of grid events Protection analysis _
simulations ! ngIJ f?d%hty tgst enwrlonmlezjn:rjtot test :
. . : models based on real-world data in real-
’ jilg?rLiJkl)a:jtt?Otrr]ansmls&on- Devices ar!d syste!rns time for de-risking device integration.
communication in ) Frortwt-ﬁnd integration 10-20 nanosecond scale simulation for
power systems ZZCerI?) penr1en t power electronic dynamics
simultaneously . Multi-agent ° Fuel Cells, Energ - Control hardware in the loop and rapid
. Calibrate protection protection.  ° Low /high storag prototying of controllers.
hardware settings in systems and Temperature * Advanced control technologies and
real-time prior to field reconfiguration Electrolyzers y decision making strategies
deployment. schemes ¢ Microgrids . )
. Multi-agent »  Electric Vehicles
e« OQOUTCOME: REAL- adaptive control OUTCOME: and Fyel Ce.II Joint Collaboration with Academia and Industry
WORLD GRID . Aggregators Qgg{}‘.'&ﬁ? Electric Vehicles
SCENARIO ANALYSIS PMUs *  Pumped Storage
IN REAL-TIME - Relays & Hydre
protection «  Supercapacitors
devices * Battery
: OUTCOME: GRID
ISLE-);?(;SME, STABILITY
ADVANCED
CONTROL EU - RWTH
SYSTEMS POLITO

SOUTH CAROLINA

Using unique laboratory infrastructure to create a holistic ecosystem for developing, testing and deploying power system technologies




RT SuperLab Contributions - INL

PHILHL 1 [
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Advanced Power Engineering Lab (APEL)

Tools

Adv.
Renewable mathematics

energy

Distribution
systems

L Testbeds J

Domains

Modeling

Resource
allocation

Simulation

Grid
modernization

High
performance
computing

Features:

access to power
engg. software,
HPC, and real
time simulators
sustained
collaborations
workforce
development and
education

high impact
contributions
numerous awards




RT SuperLab Contributions - CSU

» created real time (RT) model of a distribution system
 integrated distribution system to the transmission system model at INL

* Quantified errors and demonstrated distributed RT simulation capabilities with
INL

SIMULINK
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Distributed RT Setup between CSU and INL
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Unique Research and Validation Capabilities at a Scale that Matters

Total of 11+ MW variable renewable generation currently
7 MVA Controllable Grid Interface (CGl)

Multi-MW energy storage test facility
2.5MW and 5 MW dynamometers (industrial motor drives)

Medium voltage operation

Siemens 2.5 MW dynamometer " | ,‘
23 MW 5 MW dynamometer,
.. PV'Array Energy storage i TMVA.CGI
1 MW ’ o TS S Pt ey ’

Research Turbines  pAjstom GE
2 x 650 kW 3 MW 1.5 MW

NATIONAL RENEWABLE ENERGY LABORATORY




NWTC Site — Applied Energy Science “Living Lab”™

NWTC Wind Turbines st TR T—— Xcel Bus 10 MW line capacity
ﬂ:l:::‘r: ;;ﬂ&w (upgrade to 20 MW by 2018 with new 115
GE 1.5 MW CGI Bus kV transmission line, NWTC on-site
Gamesa 2 MW e substation and 35.4 kV collector system)
CART2 and CART3 7 -
Existing SunEdison ] L } Switchgear : '
1 MW PV Array ™ - Building ,$ $
s & 13.2kV # ot o
cel
Substation
(Eldorado Canyon)

500 kw

W~

1 MW /1 MWh BESS

kWh BESS
Link with ESIF grid simulator, HPC,
visualization and PHIL capabilities

Controllable Grid Interface (CGI)
for Grid and Fault Simulation
(7 MVA continuous / 40 MVA s.c.)

Future load for
microgrid testing

Distribution Bus (REDB)
ACand DC

NATIONAL RENEWABLE ENERGY LABORATORY



NREL-INL PHIL System Integrated into RT SuperLe

Battery Energy Storage
1TMW/1MWh

7 MVA

! (39 MVA for 2 sec) ] |

GE 1.5 MW Wind Turbine

------------------------------

- ---‘

"INL RTDS NWTC/CGI
RTDS

NATIONAL RENEWABLE ENERGY LABORATORY
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USC Micro-Grids and RT Simulation Capabilities

* Power system and communication RT simulation/emulation: Opal-RT,
NS3-RT, Apposite N-91, OC-48 SONET ring

 Platforms for HIL testing of distributed monitor-control (eleven high
performance CompactRIO, six multi-purpose embedded units, ten FPGA
platforms)

» Linear PHIL interfaces (15kVA, up to 200kHz bandwidth) and PV emulator

« Highly reconfigurable DC/AC micro-grid (nine 75kVA converters, several
motor drlves and passwe Ioads one 60kVA MMC)
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Decentralized Power Flow Control of Distribution
Grids

RT-SuperlLab

Network Emulator
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Decentralized Power Flow Control of Distribution
Grids

Reactive Setpoint, Inverter 1 Reactive Setpoint, Inverter 2
00

= = 500
© ©
g 400 ¥>, 400
& 300 3 300
32 29 250 @350 g %
33 30 N oy 51 M1 10 112 113 134 = e
i@ 2@ pv3:2skva 2 s - o ® 2.0 3 wo PP
/‘\ 48 ‘fa 46 - 8 s 8 Y e ;
" 26 N S~ ., 108, 104 451 & 0 hated &J 0b—
. Substation Three-Phase Reactive Power vs. Time PV 1: kVIi‘ 4 73~~~~ o5 64 106 10 - ) . : o = . : - - - o
Bus \ @ il e B 100 o Time (s) Time (s)
% ‘ 24 p 66 =~ ) Reactive Setpoint, Inverter 3 Reactive Setpoint, Inverter 4
s 2 40 PV 6: 25¢ " 5 -
g 12 \ w f % L < 400 < 400
g ’ 35 36 97 69 = =
L 20 _8 18 %0 i 0 kVA 68 & 300 8 300
3 ‘ S / 67 g 3 3 S
£ \\3 U4 \ 60 @D 74 o 200 o 200 — &
E” — 14 \ w’ 57 8: 509 kVA 73 o ) j
1 A\ 5 1 72 5 % 100 % 100}
Mo s w0 1’ 2 » w % e ) \ 72 \ 61 610 \ 7 3 e ——— g J
Time (s) 2 ] \ /52 53 54 \\ 77 78, & 0}— & 0
: i "J 55 ‘f 76 (@) 0 5 10 15 20 0 5 10 15 20
z 2 PV 7: 250 kVA % \ PV 4: 500 kvA°® g4 Time (s) Time (s)
0 96 76 Reactive Setpoint, Inverter 5 Reactive Setpoint, Inverter 6
I & 149 1 s M - 5 90(@) 88 81 = 500 4 500
PV 5: 125kVA! S 400 S 45
A 18 95 . g 87 8 g g 53 % 30 % 20
5
: . 16 L 195 3 3
. . Q. 200 Q. 200
Communication Between Inverter Controllers g i £ %0 p— =
(&) O —
A [B]lc| D0 | E | F ; I SEEE—— § o |
Y 1 2 2293.8 £ -0.004 2291.8 £ -0.043 2.34 8 T . - B ———
EXYHI 2 8  221352-1.469° 2233.32-1.098°  116.5 Time (s) Tina (8)
m 3 2 2294.2 £ -0.116° 2300.0 2 -0.038° 14.83 - Reactive Setpoint, Inverter 7 - Reactive Setpoint, Inverter 8
LA 8 4 225364-1.211° 2236.2£-1.601° 9231 5 §
B 8 2  22685.-1.298° 2307.8 £-0.048°  26.50 £ 40 £40 o fea——
XE 8 6  2271.02-1.303° 2256.5 £-1.641°  73.43 g § ™ N
EXEE 3 4 2309.22-0.131° 2268.1 £-1.796°  11.75 a 200 a 200 f
I 2 3 2317.0 £ -0.062° 2310.7 £-0.132°  18.07 2 100 2 100 r
9.03 NP 2284.6 £ -1.371° 2319.4 £-0.072°  17.01 g o R 8 o
FOXYE 6 1 227352-1.714° 2319.9 £-0.004°  22.57 . e h 20 e
4 2 2274.4 £-1.791° 2323.2 £-0.076°  22.26 Time (s) Time (s)




Thank You

REAL-TIME
sUPER LA

NS

UNIVERSITY OF WASHINGTON STATE
SOUTH CAROLINA @ UNIVERSITY

=3 AN
iiNREL 7
= 1)l

NATIONAL RENEWABLE ENERGY LABORATORY M

Sandia
M. @
Laboratories University
—0
POLITECNICO E
DI TORINO S —
e EE N m=

K E.ON Energy Research Center
G-RTSLab Idaho National Laboratory

RWTHAACHEN
UNIVERSITY




Simulation Results - USC

 Activation of CHIL at USC (control PV inverters to minimize reactive
power in |IEEE 123-bus distribution system)

« Key takeaway: optimal resource utilization
« Simulation results at ss1-ss7 co-simulation interface (INL-USC)
— Decrease in reactive power at co-simulation (substation) bus
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Simulation Results INL-RWTH

« Simulation results for the event:

—  Flow of power from INL to RWTH via HVDC

—  Key takeaway: optimal resource utilization

— Power in the HVDC link is decreased by 25 MW
 Generators at WSCC (INL) respond .

« System frequency increases -
DC power through HVDC link
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S
c 10}
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o L 1 L
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0

Generator speed [Hz]
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Simulation Results - NREL

Frequency support from a wind turbine
—  Over frequency event on account of over-generation
—  Key takeaway: stability and optimal resource allocation
—  Wind turbines respond based on droop settings
* Negative sign indicates import to INL from NREL

USsC WSU
Active power at INL-NREL PCC
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Active power [MW]
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Simulation Results - SNL

Frequency support from PV inverters
—  Over frequency event on account of over-generation
— Key takeaway: stability and optimal resource allocation

— Photovoltaic frequency—watt curve for frequency regulation and
fast contingency reserves

* Negative sign indicates import to INL from SNL
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Simulation Results - CSU

0 W

Active power [MW]
w

w
& o 8 ¢

Over frequency event due to loss of load initiated at the WSCC

— Key takeaway: optimal resource allocation such as demand
response using advanced load modeling

— Next generation demand response programs using advanced
resource allocation methods
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Simulation Results - WSU

 Loss of generation at the WSCC level
 Key takeaway: stability and resilience enhancement

« Battery charging from main grid to enhance the resiliency and
reliability of the microgrid in a grid-connected mode of operation
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Simulation Results RWTH-POLITO

« Disconnection of a generator in transmission network
—  LVRT capability of PV inverters

« Key takeaway: stability and fault ride through capabilities

RMS voltage at ss2-ss3 (RWTH-POLITO)
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