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Abstract:

Momentum, advection, diffusion, and turbulence are component physics relating to fire
simulation tools like computational fluid dynamics (CFD). Magnetic Resonance Velocimetry
and Magnetic Resonance Concentration MRV/MRC techniques can produce heretofore
unrivaled detailed measurements of three-component velocity and concentration fields in
turbulent flows. This study exhibits 3D flow comparisons between velocity and concentration
fields obtained using MRC/MRYV and SIERRA/Fuego for an urban geometry based on a section
of downtown Oklahoma City. A 1:2500 scale water flow scenario provides 0.8 mm resolution
data. Various techniques are employed to quantify the accuracy of the simulation results. The
techniques all generally suggest a good comparison between the model and experiments
throughout the compared volume. The selected metrics provide benchmark accuracy measures
that can be used to indicate quantitative accuracy of the simulations, as well as for targets for
future simulation improvements.

Keywords: CFD; fluid dynamics; validation
1. Introduction

Validation is a credibility process that helps quantify the accuracy of simulation tools for use in
predicting physical systems [1]. It is normally a persistent process that continually needs
revisiting to update with code modifications. For complex simulation tools like computational
fluid dynamics (CFD) it is a continual process that benefits from additional high-relevancy data
as new experimental test regimes are devised. Fire CFD simulation tools are complex, and
validation is a regularly evaluated challenge. Radiation, soot, chemical reactions, flow, heat
transport, diffusion, and turbulence are examples of many complicating features that are
frequently modeled with these tools. While validation can involve full-physics comparisons
between data and models, it is often more instructive (and certainly easier) to identify potential
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issues by performing component validation studies. These isolate selected code features in
simpler datasets that can be used to build confidence in the accuracy of simulation tools. The
fire community is taking this approach, endeavoring to improve the credibility of model
validation by engaging in a community effort known as Measurement and Computation of Fire
Phenomena MaCFP [2]. The MaCFP community has been using a 2D buoyant mixing helium
plume dataset for evaluating turbulent mixing and buoyant behavior at scales relevant to fire
conditions [3].

Magnetic Resonance Velocimetry (MRV) and Magnetic Resonance Concentration (MRC) are
methods that employ existing magnetic resonance imaging (MRI) systems outside their normal
healthcare applications to interrogate engineering problems of interest [4-9]. Specific scan
sequences can obtain the three velocity components or concentrations and are independently
performed over measurements that occur during a period of several hours. The data are averaged
and for the MRC technique, stitched together during processing to minimize experimental
uncertainty. Since the systems are commonly tuned to measure resonance patterns of hydrogen
protons, the best data are achieved for water flows. From a fire and modeling perspective, water
is not of particular interest. It is more dense and viscous than air and is incompressible. These
issues notwithstanding, the technique has applicability to model validation as applied to relevant
scenarios. The simulation tools solve the same transport equations regardless of the fluid type,
and self-similarity is a common and proven fluid mechanics concept that permits qualified
application of fluid data between fluids of differing types by matching key non-dimensional
parameters, such as Reynolds numbers. Liquid water experiments have been used previously for
validating fire simulation tools (e.g. [10]).

This team has collaborated previously on two datasets with similar conditions. Notional scale
geometries were constructed to simulate urban contaminant transport [11-13]. This work differs
from many of the prior comparisons by focusing on the full 3D dataset simultaneously rather
than focusing the point, line, or planar data extractions. This work also focuses on a scenario
motivated by a plume release dataset that was part of a test campaign to study the release of
contaminants in urban settings [14]. A report of the MRC/MRYV dataset is presently in review
for publication [15]. A portion of downtown Oklahoma City is modeled with a contaminant
injection just south of the intersection of W. Main St. and Broadway Ave. Flows are fully
turbulent, with calculated Reynolds numbers based on the channel cross-section greater than 10%.
While in a turbulent regime, the Reynolds number is smaller than would be desired for a
characteristic self-similar approximation to a more probable 1-2 m/s wind condition.
Nonetheless, the scenario provides a rich platform for performing a uniquely detailed assessment
of CFD accuracy in the turbulent regime.

This work seeks to apply the data from the MRC/MRYV experiments towards a validation study
for a fire simulation tool. A prime objective is to exhibit and quantify the accuracy of the
simulation tool. An equally important objective is to develop and assess comparison methods
suited to the novel validation problem relating to the unusually detailed data and model.
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2. Material and Methods

2.1 Geometry

A CAD representation of downtown Oklahoma City consistent with the datasets [14] was
obtained and scaled to 1:2500. Additive manufacturing using Accura 60 resin was used to
generate a model for insertion in the flow channel illustrated in Fig. 1. The flow section of the
channel was 196 mm wide and 110 mm high. Additional details of the channel and the flow
development section may be found in the data report [15].

Fig. 1. A graphical rendering of the flow apparatus.

Just south of the intersection of W. Main and N. Broadway, an injector (Fig. 2) with a 15-degree
angle relative to the street was placed to provide a constant rate injection of a CuSO4 doped
water stream that was nearly neutrally buoyant and provided increased signal to noise ratio for
concentration measurements. The up-wind boundary condition was measured by MRV and
applied by interpolation to the modeling. Remaining simulation boundary conditions were
assumed to be smooth walls or open boundaries (at the exit of the domain).
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Fig. 2. The injector used for the tests.

A 3.0T GE Discovery MR750 research MRI system at the Richard M. Lucas Center at Stanford
University was used for testing. An undergraduate student team from the U.S. Military
Academy helped construct the geometries and prepare the 3D printed test objects. The same
students traveled to California to perform the tests and conducted initial analyses. Datasets were
post-processed for scale accuracy and stitched together for a comprehensive dataset for the
scenario. This resulted in the 3-components of velocity and the concentration data in a data
matrix of approximately 244x127x309, or approximately 9.5 million measurement locations
(voxels).
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2.2 Alignment and Filtering

Prior work [16] has identified the mutual alignment of the simulation and experimental datasets
as a parameter of uncertainty. Achieving alignment to within an isotropic voxel length of about
0.8 mm is difficult. In this case, geometric features of the skyline structures provide good
guidelines for producing an accurate comparison. Further, as suggested by prior work [16], the
gradients of the measured variables (vorticity and gradient of concentration) provide a higher
sensitivity measure for assessing and aiding in achieving good alignment. They diverge much
quicker than the concentration scalar or velocity vector. A manual overlay technique suggested
the default dataset be moved 1 mm in the z-direction and scaled 0.99 in the x-direction to attain
the alignment of the data as presented in this report. This provided high confidence in the x- and
z-direction alignment. Y-direction alignment was more difficult to verify and may have larger
uncertainty in position than the other coordinates.

Filtering of the data is necessary for several reasons. First, it enables analysis with existing
common tools. Performing comparative calculations across a dataset with millions of points
starts to get into the application space of parallel algorithms, and this work has not progressed to
that level of maturity. Second, there are reasons to clip the data for the sake of accuracy. The
data for concentration are only reliable to the detection threshold, and interpolated velocities are
more uncertain at surfaces such as channel walls and buildings where partial fluid-volume effects
are increased. While the techniques employ strategies to detect and remove these potential
sources of error, this work also employs the use of several data clips that improves the validity of
the field data comparisons as defined by:

e Experimental concentration <= 0.02

e Experimental velocity magnitude < 1.0 mm/s (2.5% of mean)

e Boundary cells omitted (using the y+ variable from the model)

e y<0.0 (omits the injector where the experimental data were questionable)

e One building had a courtyard or otherwise similar cavity where the test team identified a

build-up of concentration. This was omitted using a spatial clipping algorithm
(0.00315>x>-0.00785, y<0.00719, -0.0534<z<-0.06044).

Gradient variables are calculated using Kitware/paraview before clipping occurs. The boundary
clips are expected to reduce or eliminate artifacts of the surface from the gradient data, while
retaining relevant domain data.

2.3 Computational

The SIERRA suite of computational tools is composed of engineering science analysis software
designed to support DOE mission applications. SIERRA is a common architecture designed to
take advantage of constantly improving computational platforms for high-fidelity simulation.
One of the fluid mechanics modules available is the low-Mach number reacting flow code
known as Fuego [17]. A suite of simulations was performed, but here we focus on the nominal
intermediate mesh results and the KSGS [18] LES turbulence model scenario. The fluid is
simulated as a constant density fluid with a mixture fraction for the concentration variable.
Simulations were run for 5 seconds, after which the concentration and velocity were averaged for
15 seconds. Prior work on similarly scaled scenarios suggests the average over that time is an
adequate representation of the mean flow. Fig. 3 illustrates the coarse mesh and illustrates some
light biasing applied to the top and down-stream regions of the flow. Table 1 gives some
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information on the meshes for the study, with the baseline ‘medium’ results being the focus of
this paper.

Fig. 3. An illustration of the coarse mesh

Table 1. Meshes used for the broader simulation study

Mesh Smallest Most Likely Largest

Coarse 0.35mm 1.7 mm 4.4 mm
Medium 0.175mm 0.85 mm 2.2 mm
fine 0.12mm  0.57 mm 1.47 mm

Grid convergence and a parameter study was conducted at the medium mesh resolution to
propagate model uncertainties and provide a better understanding of the accuracy of the model
closely following the Brown and Benavidez methods [11-12]. This presentation of the data
omits more than a mention of this study, but this additional quantitative information is expected
to become available in other forthcoming documentation.

2.4 Comparisons

We interpolate experimental results from a 0.8 mm data mesh onto the computational medium
mesh with comparable resolution. We have found previously that results are generally
insensitive to the selection of source and destination mesh. This comparison work was initially
guided by the approach Hanna and Chang (2012) [19] proposed for comparing campaign-level
test results to simulations (heretofore referred to as HC-2012). They proposed the following
metrics for assessing performance of computational models:

e The Fractional Mean Bias (FB): Z(CO — p) / (C_o ¥+ C_p)
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e The Normalized Mean-Square Error (NMSE): ((CO - Cp)z) / (C_O X C_p)
e The Geometric Mean (MG): exp(m) - exp(m)

e The Geometric Variance (VG): exp ((lnCo — lnCp)z)

e The Fraction of Predictions with in a Factor of 2 of the Observations (FAC2): 0.5<(C,/C,)<2
e The Normalized Absolute Difference (NAD): |C, — C,|/(C, + C,)

They propose an urban acceptance criteria of [FB| < 0.67; NMSE < 6; FAC2 > 0.3; and NAD <
0.5 for concentration data (¢, being the predicted variable and ¢, being the observed). Under the

assumption that these statistical parameter comparisons are agnostic to the type of variable, we
apply these to the velocity as well.

We introduce in this context three additional measures for quantifying model and experimental
differences. Two of these are identified as:

The local normalized difference (LND):

_ _lep—Col
LND = max(Cp,Co) (1)
The local logarithmic ratios (LLR):
_ max(Cp,Co)
LLR = In ( m) (2)

These two additional measures provide alternate expressions of accuracy. Both quantities
approach zero for ideal comparisons. LND cannot exceed 1.0, which represents the worst-case
comparison between model and experiment. LLR is not similarly bounded, however larger
numbers represent poorer comparisons. These have advantages over many of the HC-2012
metrics in that they do not have terms in the denominator that depend on the entire dataset. The
third additional measure is the square of the correlation coefficient. This is assessed on the raw
velocity and concentration data, as well as on the relevant accuracy measures listed above and
variable gradients including the vorticity and g-criterion. The R? term is the square of the
correlation coefficient, also known as the coefficient of determination.

Additionally, we explore the mapping of the lowest performing spatial locations on selected error
measures back onto the geometry model. This provides information on the locations of the
lowest quality predictions, which can be helpful in discovering the reasons for the error and in
addressing shortcomings.

3. Results and Discussion

Two data selection technique results are illustrated herein. Because concentration measurements
are only accurate to a mass fraction of 0.02, velocity and concentrations are compared to just the
data with viable concentration and velocity data. Velocities are clipped to ones greater than

1 mm/s to eliminate boundary node effects, and concentration to 0.02. Concentration clips omit
the building courtyard data, while the box clip (a more comprehensive comparison for velocity
only comparisons) retains these data.
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3.1 Concentration Clipped Comparisons

The concentration clipping technique left more than 275,000 points at which velocity and
concentrations could be compared in the domain. Fig. 4 shows a comparison of experimental
and simulation velocity magnitude and concentration. The data are filtered showing only 1 in 5
data points. The velocity magnitudes are clearly similar, with some limited outlier points
moderately to significantly outside the perfect fit trend. Concentration comparisons appear more
scattered, with good linear trends along the 45° best fit in these plots. Concentration data are
more sparse approaching the peak concentration of 1.0, with the bulk of the data at much smaller
concentrations. The slope of the velocity magnitude fit line constrained to an intercept of 0.0
was 0.983 with an R? of 0.824. The simulations were very well scaled to the data (poor scaling
would be evident with a slope significantly varying from 1.0). The slope of the concentration fit
line constrained to an intercept of 0.0 was 0.924 with an R? of 0.549. This fit is not as good, but
the slope suggests the concentrations are scaled similarly.
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Fig. 4. Scatter plot showing the velocity magnitude and concentration comparisons for the
0.02 concentration clipped data.

Table 2 shows the quantitative performance to the presented accuracy metrics. The LND of
0.197 is the lowest observed yet for comparisons of this nature. The HC-2012 metrics are all
passed (accepted) and mostly passed easily with metrics well away from threshold values. The
concentration metrics are generally poorer than those found in prior comparison activities with
more simplified geometries [16]. Observations of cut-plane results comparing concentrations
along various streets suggested that the concentration results were poorest nearest the injector.
The reason for this is not obvious but could be related to the truncated flow development in the
simulation for the injection.
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Table 2. Quantitative metrics for the accuracy of the model versus prediction

Parameter Concentration Pass/Fail Velocity Magnitude Pass/Fail

FB -0.1251 Pass -0.2177 Pass
NMSE 0.5630 Pass 0.09576 Pass
MG -0.01039 -0.00626

VG 2,377 6.963

FAC2 0.9128 Pass 0.9222 Pass
NAD 0.1803 Pass 0.08879 Pass
LND 0.2619 0.1971

LLR 0.4253 0.2550

3.2 Box Domain Comparison

While concentration comparisons are better suited for a more limited suite of points which have
data within the experimental accuracy window, velocity comparisons are credible throughout a
greater section of the simulated domain. A domain was selected that is limited to a region 10.3 x
8.3 x 14.5 cm that encompasses the bulk of the high-concentration prediction area horizontally.
The vertical selection was made to sample data into the free-stream flow above the urban
canopy. A similar analysis is performed on these data as was performed with the concentration
limited selection, with this selection providing over 910,000 individual points of comparison
focused on the velocity measurements.

Fig. 5 shows velocity magnitude and the three velocity component comparisons for the full
domain. There were nearly 2 million comparison points in the raw comparison. This was
reduced by half for data analysis because the analysis software could not handle the size of the
full dataset for the full analysis. For plotting, the points shown are reduced to 1 in every 20 of
the reduced dataset (for a net reduction of 1:40 from the raw dataset). One can observe in the
scatter plots that the velocity magnitude and component experimental and simulation results
compare very well, with the bulk trends suggesting a strong linearity and correlation between the
two. The raw dataset was inverted compared to the simulations in the x- and z-directions, which
had north being negative-z and east being positive-x. The comparisons here are all aligned in the
coordinate frame of the model. The slope of the velocity magnitude fit line constrained to an
intercept of 0.0 was 1.01 with an R? 0f 0.951. The simulations were very well scaled to the data,
and the fit is very good.

Comparison metrics are shown in Table 3. These measures suggest excellent similarity between
model and data. These comparisons were made on the half-sized dataset of 910,000 data points.
Prior LND and LLR magnitudes were around 0.2-0.3 [16]. This LND and LLR measure is much
better, with LND below 0.1 and LLR just above 0.1. These metrics suggest a high similarity
between data and model.
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260
261  Table 3. Quantitative metrics for the accuracy of the model versus prediction for the rectangular
262 region
Parameter Velocity Magnitude Pass/Fail
FB -0.0111 Pass
NMSE 0.0076 Pass
MG -0.0053
VG 1.0560
FAC2 0.9754 Pass
NAD 0.0296 Pass
LND 0.0862
LLR 0.1059
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3.3 Correlations

Gradients of the measured data are helpful for alignment, but also for assessing general accuracy.
Using a linear correlation analysis and illustrating the coefficient of determination (R?) between
model and simulation results, the data in Table 4 give an extended indication of the accuracy of
the comparisons using the two methods for clipping the data.

Table 4. Correlation analysis results between data and model for the concentration and box clip

data

Variable Concentration Clip R> Box Clip R?
Concentration Magnitude 0.603 0.691
Velocity Magnitude 0.841 0.952
X Velocity 0.778 0.825
Y Velocity 0.687 0.848
Z Velocity 0.928 0.968
Concentration Gradient Magnitude 0.542

Concentration X Gradient 0.295

Concentration Y Gradient 0.299

Concentration Z Gradient 0.124

Vorticity Magnitude 0.433 0.630
X Vorticity 0.423 0.502
Y Vorticity 0.514 0.579
Z Vorticity 0.268 0.286
Q-criterion 0.069 0.051

Prior work on a different dataset did not suggest good comparison for Q-criterion between data
and model [16]. This continues to hold true, with poor coefficient of determination (R?) below
0.1. The box clip generally results in better correlations between the data and model. This is
consistent with prior findings [16] and is believed to be because the concentration release point
at the base of the structures is in the urban canyon where it also coincides with higher
fluctuations and lower average velocities and velocity accuracy. This point merits future
exploration. The gradient variables did not exhibit as strong of a correlation as some prior work
[16], which suggests the potential for improved comparisons with better gradient alignment.
Concentration gradients did not exceed an R? of 0.55, and vorticity R? values were as high as
0.63. These are indicators of good alignment with the possibility of improvement with some
subtle changes.

3.4 Error Locations

A particularly powerful analysis method is possible with a full 3D dataset. It makes possible
identifying not only the cumulative accuracy of the full dataset over a selected domain, but also
indicating where the comparisons were of the lowest accuracy. This might in the future enable
identification and targeting of regions of complex flow for model improvement. Here we select
the LND comparison metric as the selection criterion. For both datasets, the maximum LND
values are sorted from the dataset. These are illustrated and mapped back onto the 3D geometry
to give a graphical spatial picture of where the data and model comparisons are the least similar.

10
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For the concentration clipped dataset, the LND parameter for velocity and concentration were
multiplied with each other to identify the locations where both comparisons were poor with high
magnitudes of the product variable. 100 of the highest error points were selected for illustration.
Figure 6 shows the locations of these points. Generally, the simulation concentrations were very
low, with the experimental concentrations also being low, but much higher than the simulated
values such that the error was high. The velocity magnitudes were generally low (suggesting
wake regions), with the experimental and modeling parameter varying as to which is much
higher than the other. Figure 7 graphically identifies the locations plotted back on the original
geometry. A cluster of points are found on W Main Avenue in the wake of the up-wind building.
Most of the rest are found on the complex parking structure northeast of the release. The surface
mesh in this and like figures is colored by elevation, with the darker surfaces representing higher
surfaces on taller structures. Points are colored by LND.
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Fig. 6 scatter plots highlighting selected points with the highest error for the concentration
clipped data

The box clipped data suggest somewhat different error locations. Here displayed are the 200
points with the highest LND error. With few exceptions, the highest errors based on the LND
parameter for velocity magnitude were on or very near the surfaces. The scatter plot in Fig. 8
suggests errors were due to a combination of much lower velocities from the experiment and the
model. Were these only low experimental values, we might conjecture that we were
unsuccessful at clipping away all of the erroneous surface data that are distorted by the
boundaries. The majority appear to fit that categorization, but some do not. Fig. 9 helps locate
the points of highest error by providing two views of the high error locations. With the
exception of a cyan point close to the release plane in the wake of an intermediate sized building
above W. Main St., most other points are near surfaces. This is perhaps indication of the errors
associated with CFD surface modeling techniques, or errors relating to variable surface
roughness in the printed experimental model. A more thorough evaluation of the error data is
left to subsequent work, but these comparisons suggest this effort has utility.

11
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Fig. 9. Highest error points for the box clipped data mapped back onto the computational
surface mesh. Top view (left) and side view (right).

3.5 General Discussion

This work exhibits the application of some analysis techniques that demonstrate utility to
quantify and identify error in CFD simulations in relation to a very rich experimental dataset.
The 0.8 mm experimental resolution provided comparable resolution to that of the CFD, which is
unusually detailed for flow comparisons. Such a detailed comparison represents a significant
improvement over traditional point, line, and planar data comparisons that risk giving a false
sense of adequacy when local comparisons could be good, but global comparisons could differ
substantially. The fact that concentration and velocity were simultaneously measured also adds
value to the comparison.

This case exhibited generally good velocity data comparisons but was lacking in the
concentration predictions. This is suggestive of problems with the concentration simulations.
The general advective nature of the velocity appears to be quite accurate based on the
quantitative comparison, although the lower performance metrics for the concentration clipped
dataset suggest the velocities are off preferentially where the concentrations are higher. This
suggests a potential issue with the injection model, a possibility that was noted in the initial
planar comparisons between the data and model (observed, but not exhibited in this paper). The
boundary conditions and/or flow development in and around the injector might be causal. Other
error sources are also worth consideration, like the diffusion methods used in the models and the
slight density gradients in the tests caused by introduction of the contaminant that enables
detection. The identification of the highest error datapoints in the wake of structures on W. Main
St. suggest potential difficulties with comparisons in the wakes of structure.

The poor Q-criterion comparisons are surprising given the high accuracy exhibited in the
velocity comparisons. Vorticity comparisons suggested a correlation, but not as strong as the

13
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velocity. One potential interpretation of this could be that the code is struggling with vorticity
that is sourced from vortical fluid motion, the contribution intended to be better isolated by the
Q-citerion. The vorticity equations also account viscous shear in flows as ‘vorticity’, and this
could be the component of the computed vorticity that lends to the improved correlation. The Q-
criterion is also in different units than vorticity, which may play a role in the accuracy. As
previously noted [16], gradient parameters have been shown to be leading indicators of
inadequate spatial alignment, and correlations for the primary variables can be fairly good even
in mis-alignment situations. It merits consideration to perform a more detailed follow-up study
that evaluates the gradient parameters and the mesh alignment. Even though the velocity vector
comparisons suggest very good alignment, optimal alignment cannot be certified without a more
rigorous study of the dataset comparisons. This alignment challenge was not anticipated in pre-
comparison work and seems to be a consideration for additional effort in subsequent studies.
The general issues with gradient comparisons merits further attention.

This data comparison exposes another unique challenge associated with the existence of such
detailed experimental and simulation data. The computational methods for analysis restricted
what could have been an even more detailed comparison. The consequences of thinning the
comparisons as was done in this case is probably not severe, but it would be advisable to verify
this. Such a task is relegated to follow-on work. Another potentially productive follow-on
activity might also be to develop or identify the techniques that enable more detailed complete
comparisons of the datasets through large-scale data techniques and automated analysis.

The methods for dealing with full 3D dataset comparisons such as this one deserve further
consideration. We are unaware of similar prior work on CFD comparisons with comparably rich
datasets. The HC-2012 suggested comparison statistical methods along with the additional ones
we have introduced to this problem appear to have value in several ways. First, the quantitative
measures give a way to express the accuracy of the comparisons in a way that stands alone
quantitatively, but also serves as a relative magnitude of potential accuracy. We see value in
these methods as well as the comparison plots produced here for future studies of this nature. As
this type of comparison becomes more common, this paper hopefully provides guidance that was
not initially obvious relating to how to perform a valuable comparison for these types of rich
datasets. The HC-2012 thresholds for acceptance were passed, but these do not appear to be as
relevant to this type of comparison as it was for the author’s application. Future work may focus
on defining a more discriminating success measure for CFD applications. It is anticipated that
there is utility in studying ways to improve comparison and assessment techniques to improve
the quality of the validation effort.

A main objective of validation is to be able to quantify simulation accuracy and to identify
potential improvements or shortcomings. This work that includes the novel experimental
techniques coupled with detailed and comprehensive analysis methodologies represents a step
towards generally improved modeling capabilities that will enable modeling to impact a greater
range of problems in the future.

4. Conclusions

The MRC/MRYV techniques were used to perform a validation comparison with Sandia’s
SIERRA/Fuego fire simulation CFD software. A model for Oklahoma City was used as a
geometric case for a highly complex flow geometry. Remarkable accuracy was found in the
velocity comparisons, with many of the quantitative benchmark measures exhibiting very low
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error. Concentration predictions were less accurate, but still suggest good representation of the
bulk trends. This novel application of technical capabilities provides confidence and quantifiable
accuracy metrics for calculations including the momentum, species, and turbulence models in a
CFD code. Results of high error locations are mapped back onto the original geometry,
suggesting regions where models are least accurate compared to the data. This work illustrates a
novel and promising methods approach to validation that helps quantify model accuracy for CFD
applications in 3 dimensions.
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