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14 Abstract:

15 Momentum, advection, diffusion, and turbulence are component physics relating to fire
16 simulation tools like computational fluid dynamics (CFD). Magnetic Resonance Velocimetry
17 and Magnetic Resonance Concentration MRV/MRC techniques can produce heretofore
18 unrivaled detailed measurements of three-component velocity and concentration fields in
19 turbulent flows. This study exhibits 3D flow comparisons between velocity and concentration
20 fields obtained using MRC/MRV and SIERRA/Fuego for an urban geometry based on a section
21 of downtown Oklahoma City. A 1:2500 scale water flow scenario provides 0 8 mm resolution
22 data. Various techniques are employed to quantify the accuracy of the simulation results. The
23 techniques all generally suggest a good comparison between the model and experiments
24 throughout the compared volume. The selected metrics provide benchmark accuracy measures
25 that can be used to indicate quantitative accuracy of the simulations, as well as for targets for
26 future simulation improvements.

27

28 Keywords: CFD; fluid dynamics; validation

29 1. Introduction

30 Validation is a credibility process that helps quantify the accuracy of simulation tools for use in
31 predicting physical systems [1]. It is normally a persistent process that continually needs
32 revisiting to update with code modifications. For complex simulation tools like computational
33 fluid dynamics (CFD) it is a continual process that benefits from additional high-relevancy data
34 as new experimental test regimes are devised. Fire CFD simulation tools are complex, and
35 validation is a regularly evaluated challenge. Radiation, soot, chemical reactions, flow, heat
36 transport, diffusion, and turbulence are examples of many complicating features that are
37 frequently modeled with these tools. While validation can involve full-physics comparisons
38 between data and models, it is often more instmctive (and certainly easier) to identify potential
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39 issues by performing component validation studies. These isolate selected code features in
40 simpler datasets that can be used to build confidence in the accuracy of simulation tools. The
41 fire community is taking this approach, endeavoring to improve the credibility of model
42 validation by engaging in a community effort known as Measurement and Computation of Fire
43 Phenomena MaCFP [2]. The MaCFP community has been using a 2D buoyant mixing helium
44 plume dataset for evaluating turbulent mixing and buoyant behavior at scales relevant to fire
45 conditions [3].

46 Magnetic Resonance Velocimetry (MRV) and Magnetic Resonance Concentration (MRC) are
47 methods that employ existing magnetic resonance imaging (MRI) systems outside their normal
48 healthcare applications to interrogate engineering problems of interest [4-9]. Specific scan
49 sequences can obtain the three velocity components or concentrations and are independently
50 performed over measurements that occur during a period of several hours. The data are averaged
51 and for the MRC technique, stitched together during processing to minimize experimental
52 uncertainty. Since the systems are commonly tuned to measure resonance patterns of hydrogen
53 protons, the best data are achieved for water flows. From a fire and modeling perspective, water
54 is not of particular interest. It is more dense and viscous than air and is incompressible. These
55 issues notwithstanding, the technique has applicability to model validation as applied to relevant
56 scenarios. The simulation tools solve the same transport equations regardless of the fluid type,
57 and self-similarity is a common and proven fluid mechanics concept that permits qualified
58 application of fluid data between fluids of differing types by matching key non-dimensional
59 parameters, such as Reynolds numbers. Liquid water experiments have been used previously for
60 validating fire simulation tools (e.g. [10]).

61 This team has collaborated previously on two datasets with similar conditions. Notional scale
62 geometries were constructed to simulate urban contaminant transport [11-13]. This work differs
63 from many of the prior comparisons by focusing on the full 3D dataset simultaneously rather
64 than focusing the point, line, or planar data extractions. This work also focuses on a scenario
65 motivated by a plume release dataset that was part of a test campaign to study the release of
66 contaminants in urban settings [14]. A report of the MRC/MRV dataset is presently in review
67 for publication [15]. A portion of downtown Oklahoma City is modeled with a contaminant
68 injection just south of the intersection of W. Main St. and Broadway Ave. Flows are fully
69 turbulent, with calculated Reynolds numbers based on the channel cross-section greater than 104.
70 While in a turbulent regime, the Reynolds number is smaller than would be desired for a
71 characteristic self-similar approximation to a more probable 1-2 m/s wind condition.
72 Nonetheless, the scenario provides a rich platform for performing a uniquely detailed assessment
73 of CFD accuracy in the turbulent regime.

74 This work seeks to apply the data from the MRC/MRV experiments towards a validation study
75 for a fire simulation tool. A prime objective is to exhibit and quantify the accuracy of the
76 simulation tool. An equally important objective is to develop and assess comparison methods
77 suited to the novel validation problem relating to the unusually detailed data and model.

78

79

80
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81 2. Material and Methods

82 2.1 Geometry

83 A CAD representation of downtown Oklahoma City consistent with the datasets [14] was
84 obtained and scaled to 1:2500. Additive manufacturing using Accura 60 resin was used to
85 generate a model for insertion in the flow channel illustrated in Fig. 1. The flow section of the
86 channel was 196 mm wide and 110 mm high. Additional details of the channel and the flow
87 development section may be found in the data report [15].

88

89 Fig. 1. A graphical rendering of the flow apparatus.

90 Just south of the intersection of W. Main and N. Broadway, an injector (Fig. 2) with a 15-degree
91 angle relative to the street was placed to provide a constant rate injection of a CuSat doped
92 water stream that was nearly neutrally buoyant and provided increased signal to noise ratio for
93 concentration measurements. The up-wind boundary condition was measured by MRV and
94 applied by interpolation to the modeling. Remaining simulation boundary conditions were
95 assumed to be smooth walls or open boundaries (at the exit of the domain).

96

97
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Fig. 2. The injector used for the tests.

99 A 3.0T GE Discovery MR750 research MRI system at the Richard M. Lucas Center at Stanford
100 University was used for testing. An undergraduate student team from the U.S. Military
101 Academy helped construct the geometries and prepare the 3D printed test objects. The same
102 students traveled to California to perform the tests and conducted initial analyses. Datasets were
103 post-processed for scale accuracy and stitched together for a comprehensive dataset for the
104 scenario. This resulted in the 3-components of velocity and the concentration data in a data
105 matrix of approximately 244x127x309, or approximately 9 5 million measurement locations
106 (voxels).
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107 2.2 Alignment and Filtering

108 Prior work [16] has identified the mutual alignment of the simulation and experimental datasets
109 as a parameter of uncertainty. Achieving alignment to within an isotropic voxel length of about
110 0.8 mm is difficult. In this case, geometric features of the skyline structures provide good
111 guidelines for producing an accurate comparison. Further, as suggested by prior work [16], the
112 gradients of the measured variables (vorticity and gradient of concentration) provide a higher
113 sensitivity measure for assessing and aiding in achieving good alignment. They diverge much
114 quicker than the concentration scalar or velocity vector. A manual overlay technique suggested
115 the default dataset be moved 1 mm in the z-direction and scaled 0.99 in the x-direction to attain
116 the alignment of the data as presented in this report. This provided high confidence in the x- and
117 z-direction alignment. Y-direction alignment was more difficult to verify and may have larger
118 uncertainty in position than the other coordinates.

119 Filtering of the data is necessary for several reasons. First, it enables analysis with existing
120 common tools. Performing comparative calculations across a dataset with millions of points
121 starts to get into the application space of parallel algorithms, and this work has not progressed to
122 that level of maturity. Second, there are reasons to clip the data for the sake of accuracy. The
123 data for concentration are only reliable to the detection threshold, and interpolated velocities are
124 more uncertain at surfaces such as channel walls and buildings where partial fluid-volume effects
125 are increased. While the techniques employ strategies to detect and remove these potential
126 sources of error, this work also employs the use of several data clips that improves the validity of
127 the field data comparisons as defined by:

128 • Experimental concentration <= 0.02
129 • Experimental velocity magnitude < 1.0 mm/s (2.5% of mean)
130 • Boundary cells omitted (using the y+ variable from the model)
131 • y < 0.0 (omits the injector where the experimental data were questionable)
132 • One building had a courtyard or otherwise similar cavity where the test team identified a
133 build-up of concentration. This was omitted using a spatial clipping algorithm
134 (0.00315>x>-0.00785, y<0.00719, -0.0534<z<-0.06044).

135 Gradient variables are calculated using Kitware/paraview before clipping occurs. The boundary
136 clips are expected to reduce or eliminate artifacts of the surface from the gradient data, while
137 retaining relevant domain data.

138 2.3 Computational

139 The SIERRA suite of computational tools is composed of engineering science analysis software
140 designed to support DOE mission applications. SIERRA is a common architecture designed to
141 take advantage of constantly improving computational platforms for high-fidelity simulation.
142 One of the fluid mechanics modules available is the low-Mach number reacting flow code
143 known as Fuego [17]. A suite of simulations was performed, but here we focus on the nominal
144 intermediate mesh results and the KSGS [18] LES turbulence model scenario. The fluid is
145 simulated as a constant density fluid with a mixture fraction for the concentration variable.
146 Simulations were run for 5 seconds, after which the concentration and velocity were averaged for
147 15 seconds. Prior work on similarly scaled scenarios suggests the average over that time is an
148 adequate representation of the mean flow. Fig. 3 illustrates the coarse mesh and illustrates some
149 light biasing applied to the top and down-stream regions of the flow. Table 1 gives some
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150 information on the meshes for the study, with the baseline 'medium' results being the focus of
151 this paper.

152

153

154

155

156

Fig. 3. An illustration of the coarse mesh

Table 1. Meshes used for the broader simulation study

Mesh Smallest Most Likely Largest
Coarse 0.35 mm 1.7 mm 4.4 mm

Medium 0.175 mm 0.85 mm 2.2 mm

fine 0.12 mm 0.57 mm 1.47 mm

157 Grid convergence and a parameter study was conducted at the medium mesh resolution to
158 propagate model uncertainties and provide a better understanding of the accuracy of the model
159 closely following the Brown and Benavidez methods [11-12]. This presentation of the data
160 omits more than a mention of this study, but this additional quantitative information is expected
161 to become available in other forthcoming documentation.

162 2.4 Comparisons

163 We interpolate experimental results from a 0 8 mm data mesh onto the computational medium
164 mesh with comparable resolution. We have found previously that results are generally
165 insensitive to the selection of source and destination mesh. This comparison work was initially
166 guided by the approach Hanna and Chang (2012) [19] proposed for comparing campaign-level
167 test results to simulations (heretofore referred to as HC-2012). They proposed the following
168 metrics for assessing performance of computational models:

169 • The Fractional Mean Bias (FB): 2(C, — Cp)/(C, + Cp)
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170 • The Normalized Mean-Square Error (NMSE): ((C, — Cp)2) /(C0 x Cp)

171 • The Geometric Mean (MG): expOnC0) — expOnCp)

172 • The Geometric Variance (VG): exp (OnC, — lnCp)2)

173 • The Fraction of Predictions with in a Factor of 2 of the Observations (FAC2): 0.5<(Cp/C0)<2

174 • The Normalized Absolute Difference (NAD): 1Co — Cpl/(Co + Cp)

175 They propose an urban acceptance criteria ofIFB1 < 0.67; NMSE < 6; FAC2 > 0.3; and NAD <
176 0.5 for concentration data (cp being the predicted variable and c, being the observed). Under the
177 assumption that these statistical parameter comparisons are agnostic to the type of variable, we
178 apply these to the velocity as well.

179 We introduce in this context three additional measures for quantifying model and experimental
180 differences. Two of these are identified as:

181 The local normalized difference (LND):

182 LND = 
IC
P
-Co 1 

max(Cp,Co)

183 The local logarithmic ratios (LLR):

(1)

184 LLR = ln
( max(cp,C0)) 

(2)
min(cp,co)

185 These two additional measures provide alternate expressions of accuracy. Both quantities
186 approach zero for ideal comparisons. LND cannot exceed 1.0, which represents the worst-case
187 comparison between model and experiment. LLR is not similarly bounded, however larger
188 numbers represent poorer comparisons. These have advantages over many of the HC-2012
189 metrics in that they do not have terms in the denominator that depend on the entire dataset. The
190 third additional measure is the square of the correlation coefficient. This is assessed on the raw
191 velocity and concentration data, as well as on the relevant accuracy measures listed above and
192 variable gradients including the vorticity and q-criterion. The R2 term is the square of the
193 correlation coefficient, also known as the coefficient of determination.

194 Additionally, we explore the mapping of the lowest performing spatial locations on selected error
195 measures back onto the geometry model. This provides information on the locations of the
196 lowest quality predictions, which can be helpful in discovering the reasons for the error and in
197 addressing shortcomings

198 3. Results and Discussion

199 Two data selection technique results are illustrated herein. Because concentration measurements
200 are only accurate to a mass fraction of 0.02, velocity and concentrations are compared to just the
201 data with viable concentration and velocity data. Velocities are clipped to ones greater than
202 1 mm/s to eliminate boundary node effects, and concentration to 0.02. Concentration clips omit
203 the building courtyard data, while the box clip (a more comprehensive comparison for velocity
204 only comparisons) retains these data.

205
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206 3.1 Concentration Clipped Comparisons

207 The concentration clipping technique left more than 275,000 points at which velocity and
208 concentrations could be compared in the domain. Fig. 4 shows a comparison of experimental
209 and simulation velocity magnitude and concentration. The data are filtered showing only 1 in 5
210 data points. The velocity magnitudes are clearly similar, with some limited outlier points
211 moderately to significantly outside the perfect fit trend. Concentration comparisons appear more
212 scattered, with good linear trends along the 45° best fit in these plots. Concentration data are
213 more sparse approaching the peak concentration of 1.0, with the bulk of the data at much smaller
214 concentrations. The slope of the velocity magnitude fit line constrained to an intercept of 0.0
215 was 0.983 with an R2 of 0.824. The simulations were very well scaled to the data (poor scaling
216 would be evident with a slope significantly varying from 1.0). The slope of the concentration fit
217 line constrained to an intercept of 0.0 was 0.924 with an R2 of 0.549. This fit is not as good, but
218 the slope suggests the concentrations are scaled similarly.
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Fig. 4. Scatter plot showing the velocity magnitude and concentration comparisons for the
0.02 concentration clipped data.

219

1 2

220 Table 2 shows the quantitative performance to the presented accuracy metrics. The LND of
221 0.197 is the lowest observed yet for comparisons of this nature. The HC-2012 metrics are all
222 passed (accepted) and mostly passed easily with metrics well away from threshold values. The
223 concentration metrics are generally poorer than those found in prior comparison activities with
224 more simplified geometries [16]. Observations of cut-plane results comparing concentrations
225 along various streets suggested that the concentration results were poorest nearest the injector.
226 The reason for this is not obvious but could be related to the truncated flow development in the
227 simulation for the injection.

228

229

230
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231 Table 2. Quantitative metrics for the accuracy of the model versus prediction

Parameter Concentration Pass/Fail Velocity Magnitude Pass/Fail
FB -0.1251 Pass -0.2177 Pass
NMSE 0.5630 Pass 0.09576 Pass
MG -0.01039 -0.00626
VG 2.377 6.963
FAC2 0.9128 Pass 0.9222 Pass
NAD 0.1803 Pass 0.08879 Pass
LND 0.2619 0.1971
LLR 0.4253 0.2550

232

233 3.2 Box Domain Comparison

234 While concentration comparisons are better suited for a more limited suite of points which have
235 data within the experimental accuracy window, velocity comparisons are credible throughout a
236 greater section of the simulated domain. A domain was selected that is limited to a region 10.3 x
237 8.3 x 14.5 cm that encompasses the bulk of the high-concentration prediction area horizontally.
238 The vertical selection was made to sample data into the free-stream flow above the urban
239 canopy. A similar analysis is performed on these data as was performed with the concentration
240 limited selection, with this selection providing over 910,000 individual points of comparison
241 focused on the velocity measurements.

242 Fig. 5 shows velocity magnitude and the three velocity component comparisons for the full
243 domain. There were nearly 2 million comparison points in the raw comparison. This was
244 reduced by half for data analysis because the analysis software could not handle the size of the
245 full dataset for the full analysis. For plotting, the points shown are reduced to 1 in every 20 of
246 the reduced dataset (for a net reduction of 1:40 from the raw dataset). One can observe in the
247 scatter plots that the velocity magnitude and component experimental and simulation results
248 compare very well, with the bulk trends suggesting a strong linearity and correlation between the
249 two. The raw dataset was inverted compared to the simulations in the x- and z-directions, which
250 had north being negative-z and east being positive-x. The comparisons here are all aligned in the
251 coordinate frame of the model. The slope of the velocity magnitude fit line constrained to an
252 intercept of 0.0 was 1.01 with an R2 of 0.951. The simulations were very well scaled to the data,
253 and the fit is very good.

254 Comparison metrics are shown in Table 3. These measures suggest excellent similarity between
255 model and data. These comparisons were made on the half-sized dataset of 910,000 data points.
256 Prior LND and LLR magnitudes were around 0.2-0.3 [16]. This LND and LLR measure is much
257 better, with LND below 0.1 and LLR just above 0.1. These metrics suggest a high similarity
258 between data and model.

259
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260

261 Table 3. Quantitative metrics for the accuracy of the model versus prediction for the rectangular
262 region

Parameter Velocity Magnitude Pass/Fail 
FB -0.0111 Pass
NMSE 0.0076 Pass
MG -0.0053
VG 1.0560
FAC2 0.9754 Pass
NAD 0.0296 Pass
LND 0.0862
LLR 0.1059
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263 3.3 Correlations

264 Gradients of the measured data are helpful for alignment, but also for assessing general accuracy.
265 Using a linear correlation analysis and illustrating the coefficient of determination (R2) between

266 model and simulation results, the data in Table 4 give an extended indication of the accuracy of
267 the comparisons using the two methods for clipping the data.

268 Table 4. Correlation analysis results between data and model for the concentration and box clip

269 data

Variable Concentration Clip R2 Box Clip R2

Concentration Magnitude 0.603 0.691

Velocity Magnitude 0.841 0.952

X Velocity 0.778 0.825

Y Velocity 0.687 0.848

Z Velocity 0.928 0.968

Concentration Gradient Magnitude 0.542

Concentration X Gradient 0.295

Concentration Y Gradient 0.299

Concentration Z Gradient 0.124

Vorticity Magnitude 0.433 0.630

X Vorticity 0.423 0.502

Y Vorticity 0.514 0.579

Z Vorticity 0.268 0.286

Q-criterion 0.069 0.051

270

271 Prior work on a different dataset did not suggest good comparison for Q-criterion between data
272 and model [16]. This continues to hold true, with poor coefficient of determination (R2) below

273 0.1. The box clip generally results in better correlations between the data and model. This is
274 consistent with prior findings [16] and is believed to be because the concentration release point

275 at the base of the structures is in the urban canyon where it also coincides with higher

276 fluctuations and lower average velocities and velocity accuracy. This point merits future

277 exploration. The gradient variables did not exhibit as strong of a correlation as some prior work

278 [16], which suggests the potential for improved comparisons with better gradient alignment.

279 Concentration gradients did not exceed an R2 of 0.55, and vorticity R2 values were as high as

280 0.63. These are indicators of good alignment with the possibility of improvement with some

281 subtle changes.

282 3.4 Error Locations

283 A particularly powerful analysis method is possible with a full 3D dataset. It makes possible

284 identifying not only the cumulative accuracy of the full dataset over a selected domain, but also

285 indicating where the comparisons were of the lowest accuracy. This might in the future enable

286 identification and targeting of regions of complex flow for model improvement. Here we select

287 the LND comparison metric as the selection criterion. For both datasets, the maximum LND

288 values are sorted from the dataset. These are illustrated and mapped back onto the 3D geometry

289 to give a graphical spatial picture of where the data and model comparisons are the least similar.
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290 For the concentration clipped dataset, the LND parameter for velocity and concentration were
291 multiplied with each other to identify the locations where both comparisons were poor with high
292 magnitudes of the product variable. 100 of the highest error points were selected for illustration.
293 Figure 6 shows the locations of these points. Generally, the simulation concentrations were very
294 low, with the experimental concentrations also being low, but much higher than the simulated
295 values such that the error was high. The velocity magnitudes were generally low (suggesting
296 wake regions), with the experimental and modeling parameter varying as to which is much
297 higher than the other. Figure 7 graphically identifies the locations plotted back on the original
298 geometry. A cluster of points are found on W Main Avenue in the wake of the up-wind building.
299 Most of the rest are found on the complex parking structure northeast of the release. The surface
300 mesh in this and like figures is colored by elevation, with the darker surfaces representing higher
301 surfaces on taller structures. Points are colored by LND.
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302 The box clipped data suggest somewhat different error locations. Here displayed are the 200
303 points with the highest LND error. With few exceptions, the highest errors based on the LND
304 parameter for velocity magnitude were on or very near the surfaces. The scatter plot in Fig. 8
305 suggests errors were due to a combination of much lower velocities from the experiment and the
306 model. Were these only low experimental values, we might conjecture that we were
307 unsuccessful at clipping away all of the erroneous surface data that are distorted by the
308 boundaries. The majority appear to fit that categorization, but some do not. Fig. 9 helps locate
309 the points of highest error by providing two views of the high error locations. With the
310 exception of a cyan point close to the release plane in the wake of an intermediate sized building
311 above W. Main St., most other points are near surfaces. This is perhaps indication of the errors
312 associated with CFD surface modeling techniques, or errors relating to variable surface
313 roughness in the printed experimental model. A more thorough evaluation of the error data is
314 left to subsequent work, but these comparisons suggest this effort has utility.
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315

316

317 Fig. 8. Scatter plot highlighting selected points with the highest error for the box clipped data
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319

320 3.5 General Discussion

321 This work exhibits the application of some analysis techniques that demonstrate utility to
322 quantify and identify error in CFD simulations in relation to a very rich experimental dataset.
323 The 0 8 mm experimental resolution provided comparable resolution to that of the CFD, which is
324 unusually detailed for flow comparisons. Such a detailed comparison represents a significant
325 improvement over traditional point, line, and planar data comparisons that risk giving a false
326 sense of adequacy when local comparisons could be good, but global comparisons could differ
327 substantially. The fact that concentration and velocity were simultaneously measured also adds
328 value to the comparison.

329 This case exhibited generally good velocity data comparisons but was lacking in the
330 concentration predictions. This is suggestive of problems with the concentration simulations.
331 The general advective nature of the velocity appears to be quite accurate based on the
332 quantitative comparison, although the lower performance metrics for the concentration clipped
333 dataset suggest the velocities are off preferentially where the concentrations are higher. This
334 suggests a potential issue with the injection model, a possibility that was noted in the initial
335 planar comparisons between the data and model (observed, but not exhibited in this paper). The
336 boundary conditions and/or flow development in and around the injector might be causal. Other
337 error sources are also worth consideration, like the diffusion methods used in the models and the
338 slight density gradients in the tests caused by introduction of the contaminant that enables
339 detection. The identification of the highest error datapoints in the wake of structures on W. Main
340 St. suggest potential difficulties with comparisons in the wakes of structure.

341 The poor Q-criterion comparisons are surprising given the high accuracy exhibited in the
342 velocity comparisons. Vorticity comparisons suggested a correlation, but not as strong as the
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343 velocity. One potential interpretation of this could be that the code is struggling with vorticity
344 that is sourced from vortical fluid motion, the contribution intended to be better isolated by the
345 Q-citerion. The vorticity equations also account viscous shear in flows as 'voracity', and this
346 could be the component of the computed vorticity that lends to the improved correlation. The Q-
347 criterion is also in different units than vorticity, which may play a role in the accuracy. As
348 previously noted [16], gradient parameters have been shown to be leading indicators of
349 inadequate spatial alignment, and correlations for the primary variables can be fairly good even
350 in mis-alignment situations. It merits consideration to perform a more detailed follow-up study
351 that evaluates the gradient parameters and the mesh alignment. Even though the velocity vector
352 comparisons suggest very good alignment, optimal alignment cannot be certified without a more
353 rigorous study of the dataset comparisons. This alignment challenge was not anticipated in pre-
354 comparison work and seems to be a consideration for additional effort in subsequent studies.
355 The general issues with gradient comparisons merits further attention.

356 This data comparison exposes another unique challenge associated with the existence of such
357 detailed experimental and simulation data. The computational methods for analysis restricted
358 what could have been an even more detailed comparison. The consequences of thinning the
359 comparisons as was done in this case is probably not severe, but it would be advisable to verify
360 this. Such a task is relegated to follow-on work. Another potentially productive follow-on
361 activity might also be to develop or identify the techniques that enable more detailed complete
362 comparisons of the datasets through large-scale data techniques and automated analysis.

363 The methods for dealing with full 3D dataset comparisons such as this one deserve further
364 consideration. We are unaware of similar prior work on CFD comparisons with comparably rich
365 datasets. The HC-2012 suggested comparison statistical methods along with the additional ones
366 we have introduced to this problem appear to have value in several ways. First, the quantitative
367 measures give a way to express the accuracy of the comparisons in a way that stands alone
368 quantitatively, but also serves as a relative magnitude of potential accuracy. We see value in
369 these methods as well as the comparison plots produced here for future studies of this nature. As
370 this type of comparison becomes more common, this paper hopefully provides guidance that was
371 not initially obvious relating to how to perform a valuable comparison for these types of rich
372 datasets. The HC-2012 thresholds for acceptance were passed, but these do not appear to be as
373 relevant to this type of comparison as it was for the author's application. Future work may focus
374 on defining a more discriminating success measure for CFD applications. It is anticipated that
375 there is utility in studying ways to improve comparison and assessment techniques to improve
376 the quality of the validation effort.

377 A main objective of validation is to be able to quantify simulation accuracy and to identify
378 potential improvements or shortcomings This work that includes the novel experimental
379 techniques coupled with detailed and comprehensive analysis methodologies represents a step
380 towards generally improved modeling capabilities that will enable modeling to impact a greater
381 range of problems in the future.

382 4. Conclusions

383 The MRC/MRV techniques were used to perform a validation comparison with Sandia's
384 SIERRA/Fuego fire simulation CFD software. A model for Oklahoma City was used as a
385 geometric case for a highly complex flow geometry. Remarkable accuracy was found in the
386 velocity comparisons, with many of the quantitative benchmark measures exhibiting very low
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387 error. Concentration predictions were less accurate, but still suggest good representation of the
388 bulk trends. This novel application of technical capabilities provides confidence and quantifiable
389 accuracy metrics for calculations including the momentum, species, and turbulence models in a
390 CFD code. Results of high error locations are mapped back onto the original geometry,
391 suggesting regions where models are least accurate compared to the data. This work illustrates a
392 novel and promising methods approach to validation that helps quantify model accuracy for CFD
393 applications in 3 dimensions.
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