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IEA PVPS Task 13 Subtask 1.1 New Module Concepts,
Designs, and Materials

• Activity Leaders

• Gernot Oreski (PCCL, Austria)

• Joshua Stein (Sandia, USA)

• Motivation

• Provide global survey of innovations in PV module designs and materials

• Deliverables:

• Report (2021) "Designing New Materials for Photovoltaics: Opportunities for
Lowering Cost and Increasing Performance through Advanced Material Innovations"

• Workshop (2019) "Innovations in Photovoltaic Materials"

• Get Involved:

• We welcome proposals for contributions to the final report. Please contact the

1:1— subtask leads with ideas.
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Module Components

• Top sheet and Coatings

• Encapsulants and Edge Seals

• PV Cell and Metallization

• PV Cell to Cell Interconnection

• Backsheet *14N4 ,40
• Frame and Adhesives

• Junction Box, Cabling, and Connectors

Problems can occur when:
Material requirements are not met

VI • Interactions with other materials or
the evironment are not anticipated
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Top sheeis

• Materials:

• Low iron glass (<12Oppm Fe)

• Polymers (ETFE or Ultra Barrier Film - Higher cost)

• Functional Requirements:

• High solar transmittance (e.g., 3.2mm: >91%
• Reflection losses

• Environmental barrier (keeps moisture out)

• Strength

• Safety - Glass is typically tempered
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Top Sheet Coatings

• Anti-reflection coatings

• Materials:
• Sol-gel nano-porous particles

• DSM's KhepriCoat uses hollow core
polymer particles with a silica shell

• Functional Requirements:
• -3% increase in STC flash rating (normal

incidence)

• 3.5% - 5% increase in energy from fielded
systems (diffuse and off-angle incident light)

• Anti-soiling coatings

• Materials:
• Metal-oxide nanoparticles with polymer

binder

• Functional Requirements:
• Resist soil accumulation

• Hydrophobic - relies on water droplet
formation, droplets carry away particles

• Hydrophilic - enhances water sheeting

Single Layer Antireflective Coatings:
Traditional vs.Core-shell AR Coatings

Traditional AR Coating
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Encapsulant Materials

• Poly(ethylene-co-vinyl acetate) (EVA)
• Copolymer of ethylene and vinyl acetate

units, generally with vinyl acetate weight
percent of 27 to 33

• Most common PV encapsulant choice
• Polyolefin elastomers

• Broad class of ethylene copolymers
• Silicones

• Many options have been researched
including curing and non-curing

• lonomers
• Reduce time/temperature of lamination step
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Encapsulant Additive CompoundF
jig% • UV-stabilizers & absorbers — absorb UV and dissipate as heat
z • Radical scavengers — antioxidants that remove peroxy, alkoxy, hydroxyl, and alkyl radicals

5 • Crosslinking agents — curing agents that help to form covalent bonds between polymer molecules
• Adhesion promoters — coupling agents (typically organosilanes) that help dissimilar materials to

bond (e.g. glass, PV cells, encapsulants, backsheets).
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Encapsulant Requirements

• Low light absorption and a refractive index that
minimizes interface reflections

• High thermal conductivity to reduce operating
temperature

• Protect cells and metallization from water
• Protect cells from mechanical stresses
• Maintain electrical insulation
• Provide adhesion between layers of the
laminate
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Encapsulant Properties
• Volume resistivity
• Moisture volume transmission rate (MVTR)
• Light transmission (%)
• UV cutoff wavelength
• Thermal conductivity
• Young's modulus
• Glass transition temperature
• Curing class (slow, fast, ultra-fast, etc.)
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EVA vs. Polyolefin
Different encapsulation material
World market share [%]
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• EVA (Ethylene Vinyl Acetat) • Polyolefin

• PQMS (Polydimethyl Silicone) /Silicone PVB (Polyvinyl Butyral)
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• Polyolefin encapsulants have increased their
market share, targeting particular drawbacks of
traditional EVA

vet • Higher volume resistivity and lower WVTR

CLIN protect cells against potential induced
degradation (PID)

• Lower T protects cells from mechanical stress
Ca•

g
to lower operating temperatures

'A*

ENGAGETM PV
POE-based
Film

EVA-based
Film

Volume Resistivity, ohm-cm
@ 23°C (73.4°F)(2) >2.64E+16 1.32E+14

Leakage Current, picoamp
@ 23°C (73.4°F)

19
3,795

Dielectric Strength, kV/cm 601 444

Water Vapor Transmission
Rate (WVTR), g/m2-day @
38°C (100°F)(3)

3.3 34

Thermal Conductivity, W/m-K 0.291 0.246

Optical Transmission, %(4) >92% 93

Refractive Index(2) 1.475 1.455

Glass Transition Temperature
(Tg), °C (°F)

_45 (-49)
-35 (-31)
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PV Cell and Metallization

• Materials: Ag, Al, Ni/Cu

• Methods:

• Screen Printing: Ag printing, Contact anneal at 740-800 °C
— Most common (Less precision and cheaper)

• Positional accuracy is limited due to screen stretching

• Highest optical, transmission, and recombination losses

• Lithography: Application of photoresist, evaporation of
metal seed layer, plating to thicken fingers, FGA at 400 °C —
Precise but expensive

• Laser grooving: Ni plating + NiSi formation, Cu plating + Ad
dip, FGA at 400 °C

• Precise but expensive (longer process times)

• Environmental concerns from metal bath waste

• PERC cell metallization requires creating a local BSF
• Deep AL-BSF minimizes recombination

>I

Climm

• Functional Requirements:
• Low resistance contacts with cell
• Low cost materials and fast process
• High aspect ratio (line height to width)

Good contact Void

IIMINNTATRag-

i6tal 111,  111=
Shallow BSF

(Balaji et al., 2019)



I EA INTERNATIONAL ENERGY AGENCY

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

PV Cell to Cell Interconnection
• Soldered Busbars

• Trend toward higher # BBs, reducing Ag and cell finger area
• Process control is important (bad solder bonds = common failure mode)

• Multiwire (SmartWire)
• Wires coated with low melting temp alloy, connection made during

lamination. Bus bars on the front and back are not needed.
• Reduces Ag, cell cracks, stress on wafer (low temp processing)

• Shingling
• Optimal area utilization, Low ohmic losses (up to 10% power gain)
• Low processing temperatures, Lower operating temperatures
• Improved aesthetics, Rounded cell corners are an issue
• Cell fingers and aspect ratio should be optimized to maintain good FF.

• Metal Wrap Through (MWT)
• Holes drilled in cells, filled with metal to bring front contacts to back.
• Backsheet with conductive circuit pattern attached with ECA and then

laminated.

cirro&tWt*
• Functional
Requirements:
• Low resistance contacts
between cells

• Low cost materials and fast
process

• Minimize shading losses
• Reliability to stresses

1.0.11,1161{1{P
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Mono MWT Cell Poly MWT Cell
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Backsheet Requirements

• Electrical Isolation

• Safety from electrical shock

• Protect cells and metallization from
corrosion

• Reflects light for enhanced performance

• A pseudo-square cell can experience
about 2% improvement by using a white
vs black backsheet.

• Backsheets do not appreciably keep
moisture out

• Typical backsheets allow equilibration
with a timescale of days, not years

• Diurnal thermal cycling can move
Lel% moisture in and out of the package
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• Additive compounds:
• Similar to encapsulant materials, need

stabilizers and adhesion promoters
• Flame retardants
• Pigments
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Typical Backsheet Materials

• Generally a multi-layer
structure bound together
by adhesives or co-
extruded

• Materials:
• PET (polyethylene

terephthalate)
• TPT (Tedlar-PET-Tedlar

where Tedlar is a
polyvinyl fluoride)

• PVDF (polyvinylidene
difluoride)

• Polyamide

cn
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Tedlar/ /Tedlar

(T T, most common)

Tedlar

Adhesive

Tie layer

PET

Adhesive

Tie Layer

Tedlar

PET/PETPE" (PPE)

From Mike Kempe, 2019 DuraMAT Workshop

•

Pigmented PET outer

Layer

Adhesive Tie layer

Clear PET Inner Layer

Adhesive Tie Layer

Inner Low VA-EVA

Pigmented Low VA-EVA

Outer Low VA-EVA
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Junction Box, Cabling, and Connectors

Functional Requirements:

• Bring electricity from the module while keeping
moisture and dirt out.

• Electrical isolation, Comparative tracking index
(CTI)

• UL-94 flammability rating, UV protected.

• Housing for bypass diodes or power electronics
• Must withstand temperatures near 100°C (in bypass

condition) RTI=relative temperature index

• Durability and abrasion resistance (wind)

• Easy and quick installation and service

• Adhesives must be reliable and durable.
se hi

Materials and Design
• Polyphenylene (PPO) — RTI —100 °C
• Polyamide 66 resin w/glass filler
(Dupont's Zytel) RTI —130 °C, CTI —250V

• Single 4 multiple
• Potted in polymer resin
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Frame and Adhesives
Frame Functions
• Structural support and strength

• If module is frameless this support
is still necessary and must be
achieved from racking

• Attachment points for mounting
• Protection during shipping, handling,

and installation
• Module is attached to frame with

adhesives or tape
• Adhesive properties and

placement influences stress on
module and cells

Traditional Double glass

Different frame materials
World market share [%]
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Sandia Module Mechanical Model

(J. Hartley,
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DuraMAT, 2019)

Deflection Sensitivity
1.0 kPa

Parameter

Edge tape
modulus
Glass
modulus
Edge tape
Poisson'
Glass
thicknes
Encap.
thickness

I R I

0.630

0.532

0.336

0.286

0.132

Parameter

Glass
modulus
Edge tape
modulus
Edge tape
Poisson's
Glass
thickness
Encap.
thickness

I RI

0.561

0.553

0.361

0.321

0.111

Parameters highly correlated
to module deflection
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Summarv and Conclusions

• PV modules are comprised of many components, each with their
own set of requirements.

• Less attention is paid to material interactions at interfaces
between different materials
• Thinner, lighter materials stress transfer to cell cell cracking
• Interaction of cell AR coating with encapsulant 4Adhesion
degradation delamination

• UV degradation of EVA acetic acid corrosion
• Developing new and innovative materials for PV requires a careful
and complete systems analysis of possible interactions.
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