

1 **Uncertainty Estimation for Decomposing Carbon Fiber Epoxy Composites**

2 Sarah N. Scott^{a*}, Victor E. Brunini^b, Andrew J. Kurzawski^c, John C. Hewson^d, Juan P. Hidalgo^e,
3 Rory M. Hadden^f, Stephen Welch^g

4 ^aSandia National Laboratories, Livermore, CA, USA, snscott@sandia.gov

5 ^bSandia National Laboratories, Livermore, CA, USA, vebruni@sandia.gov

6 ^cSandia National Laboratories, Albuquerque, NM, USA, akurzaw@sandia.gov

7 ^dSandia National Laboratories, Albuquerque, NM, USA, jchewso@sandia.gov

8 ^eSchool of Civil Engineering, The University of Queensland, St. Lucia, Australia,
9 j.hidalgo@uq.edu.au

10 ^fSchool of Engineering, The University of Edinburgh, Edinburgh, UK, r.hadden@ed.ac.uk

11 ^gSchool of Engineering, The University of Edinburgh, Edinburgh, UK, s.welch@ed.ac.uk

12 *Corresponding author

13

14 **Highlights:**

15 • A computational model of carbon fiber epoxy composites is proposed
16 • The model is compared to experiments with a range of conditions
17 • Uncertainty is assessed for model and experiment

18

19 **Abstract:**

20 Carbon fiber epoxy composites are increasingly used in systems requiring a material that is both
21 strong and light weight, as in airplanes, cars, and pressure vessels. In fire environments, carbon
22 fiber epoxy composites are a fuel source subject to oxidation. This study addresses modeling the
23 thermal response of a carbon fiber composite material through heating and pyrolysis. Using TGA
24 (thermogravimetric analysis) data, a decomposition mechanism is proposed to describe the
25 pyrolysis and smoldering. This is then combined with a finite element conduction-radiation
26 model with a porous media model for gas advection. Mass loss results are compared to cone
27 calorimeter experiments where the composite was exposed to heat fluxes of 30 kW/m² and 80
28 kW/m². Two backing materials are compared, aluminum (a heat sink) and ceramic (an insulator).
29 Two thicknesses of the sample are examined, 29 mm and 4.5 mm. A sensitivity study is
30 conducted to understand the uncertainties associated with input parameters, and how these
31 sensitivities change with the heat flux, backing material, and thickness. It is shown that
32 uncertainty increases with increasing heat flux and is higher when a heat sink is used as a
33 backing material compared to an insulation. Contact resistance was found to play a large role in
34 the uncertainty for the thin samples backed with a heat sink.

35 **Keywords:** fire, carbon fiber epoxy composite, smoldering, pyrolysis, modeling, uncertainty
36 analysis

37

38 **1. Introduction**

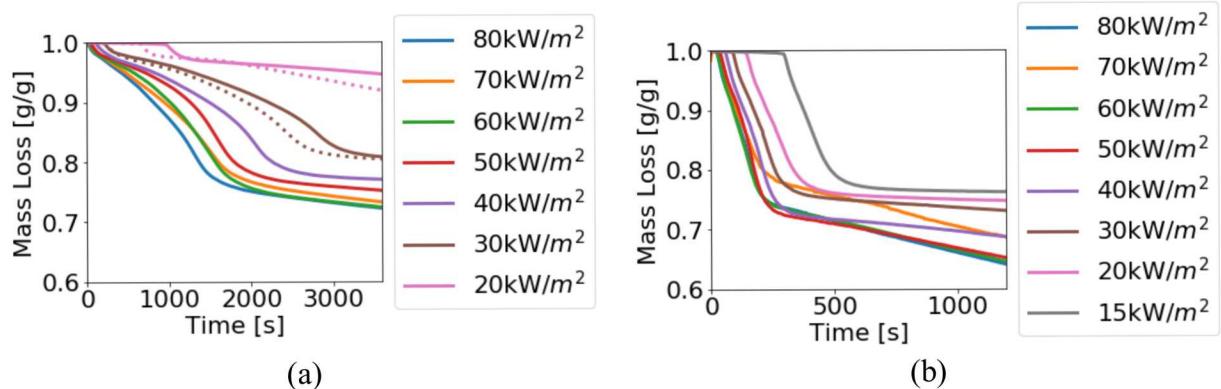
39 Carbon fiber epoxy composites are an attractive engineering material due to their low weight to
40 strength ratio. They have been extensively used in automotive and aeronautical industries, as
41 well as other industries where a light weight, yet strong, material is advantageous. However,
42 unlike more traditional engineering materials like metals, carbon fiber epoxy composites can be a
43 source of fuel in a fire. At temperatures as low as 250°C, epoxies can start to pyrolyze,
44 generating flammable gases. In order to understand the safety risks associated with these
45 materials, it is necessary to understand their behavior when exposed to heating.

46 Many others have studied the burning behavior of carbon fiber epoxy composites. Quintiere *et* *al.* explored the behavior of aircraft carbon fiber composites. They found a minimum heat flux
47 for the ignition of the material (18 kW/m²) and developed a decomposition mechanism for the
48 material [1]. Others have also determined mechanisms for these types of composites as well as
49 thermo-physical properties [2]–[6]. Reviews of the interaction between structural modeling and
50 fire behavior have also been conducted [7]. Higher fidelity models have been created using
51 FireFOAM [8] and FEM codes to understand the implications of the fire on the structure [9].

53 Recently, Hidalgo *et al.* investigated the behavior of a carbon fiber epoxy composite under a
54 range of thickness and boundary conditions in order to understand the safety risks associated
55 with using these materials in pressure vessels for hydrogen storage [10]–[12].

56 While experiments investigating the behavior of these materials are invaluable, the range of
57 conditions and scenarios that can be practically tested is constrained by available resources.
58 Validated high fidelity computational models can help fill this gap while also allowing
59 exploration of physical phenomena that cannot be directly measured during experimentation. In
60 addition, they can allow for a range of designs and conditions to be tested to better understand
61 the safety risks. To that end, this paper presents a numerical model for the pyrolysis and
62 smoldering behavior of a carbon fiber epoxy composite. The model uses a porous media plus
63 Arrhenius rate based chemistry modeling technique to describe the decomposition, heat transfer,
64 and flow of pyrolyzate gases of a carbon fiber epoxy composite when exposed to a heat source.

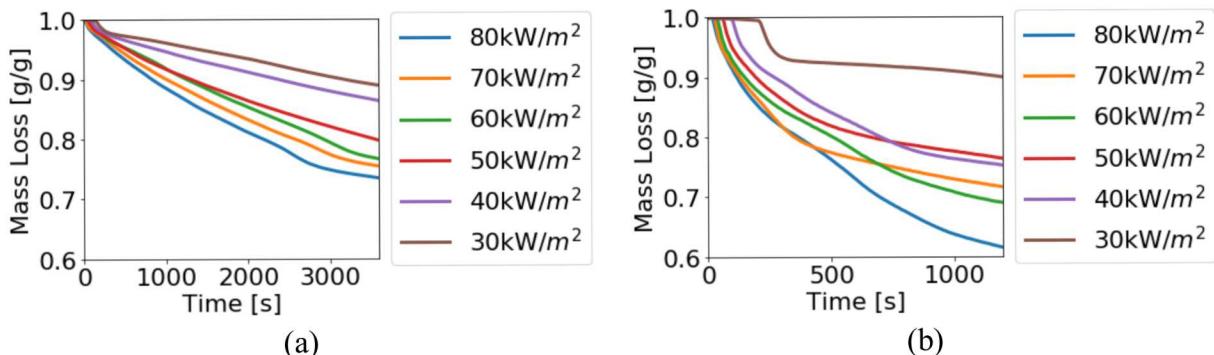
65 When applied to complex materials such as carbon fiber composites, these models incorporate a
66 high level of complexity due to the number of parameters required. In that sense, validation of
67 such models for complex materials needs to be challenged for a wide range of conditions. In
68 addition to the modeling, this paper compiles the experimental program developed by Hidalgo *et* *al.*, which explored a range of conditions affecting the heat transfer and reaction rates of a carbon
69 fiber material. Main results are revisited so that assumptions can be incorporated into the
70 numerical pyrolysis and smoldering modeling. The proposed model is compared to a subset of
71 these experimental data for validation purposes. Sensitivity studies are developed to identify the
72 relevance of specific parameters under different conditions from the experiments.


74 **2. Experimental programme setup and main results**

75 The experimental campaign developed by Hidalgo *et al.* consisted of a characterization of the
76 thermal decomposition mechanism at a kinetic regime (TGA), and an extensive bench-scale
77 testing programme using the Cone Calorimeter in two different stages: mass loss measurement
78 and thermal penetration measurement. A description of the experimental campaign and discussion
79 of the main results are presented below.

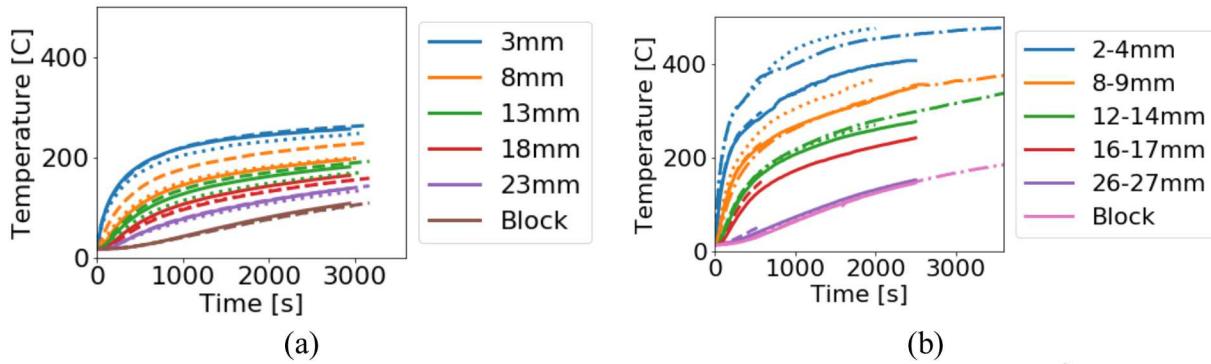
80 Thermogravimetric studies using isothermal heating of 5 °C/min from ambient temperature up to
81 850°C showed that, under non-oxidative conditions, the pyrolysis of the epoxy occurred within
82 300-450°C and a residue of 65-80% of the original mass remained. If tested in air, the thermal
83 decomposition experienced more complex behaviour, with multiple decomposition reaction
84 steps. The reactions occurring within 250 and 400 °C are believed to correspond to different
85 steps of an oxidative pyrolysis process of the epoxy, followed by oxidation of the epoxy residue
86 between 450 and 550 °C. After the epoxy decomposition, the main decomposition reaction
87 responsible of approximately 70% of the mass loss is believed to correspond to the oxidation of
88 the carbon fiber, which occurs between 550 and 810°C. The thermogravimetric results are
89 presented in Fig 6 in combination with the modeling scheme proposed for this work.

90 The first stage of tests using the Cone Calorimeter aimed at identifying the piloted ignition and
91 burning behaviour. Samples of thickness 4.5 mm and 29 mm (length and width are 100mm) were
92 exposed to heat fluxes within 15-80 kW/m². Time-to-ignition, mass loss and combustion product
93 composition measurements were taken. Two bounding backing conditions were used: a 25 mm
94 thick ceramic insulation (insulated condition) and a 25 mm thick aluminum block of 640 g (heat
95 sink). The sides of the samples were wrapped in aluminum foil to restrict the mass transfer
96 through the sides along with a 3 mm thick ceramic insulation paper to reduce the lateral heat
97 losses. Experiments with ceramic insulation were duplicated, whereas experiments with the
98 aluminum heat sink did not include repetitions due to the limited availability of samples in the
99 project.


100 This first stage allowed identifying distinct thermal behaviours of the composite due to the two
101 backing conditions. As a result, different rates of thermal decomposition could be assessed. Mass
102 loss measurements from all experiments are presented in Fig 1 and Fig 3. Although temperature
103 measurements were not taken for this stage, mass measurements indicate clearly differentiated
104 burning rates for the composite. For the range of heat fluxes studied, the residue left after the end
105 of test was within a range of 60 to 95 %, depending on the heat flux, backing condition and the
106 test duration. This relatively large residue indicates that the predominant reaction was associated
107 with the pyrolysis of epoxy. Two different regimes of mass loss are clearly identified in Fig 1,
108 the first indicative of the pyrolysis of the epoxy and the latter representative of oxidation of the
109 carbon fibers. It can also be identified that at the end of the experiments, samples tested at higher
110 heat fluxes experienced slightly larger mass loss, which can be associated to the oxidation of the
111 carbon fibers at the surface of the samples. This phenomenon was confirmed with visual
112 observations of fibrous ash on the samples top surface, with dense layers of carbon fibers
113 remaining beneath (Fig 2). A conclusion from these tests is that the oxidation of the fibers
114 occurred at a much slower rate than the pyrolysis of the epoxy, which is consistent with the high
115 temperatures required to enable the oxidation reaction. This behaviour is highlighted more
116 clearly in samples tested with a ceramic backing material (adiabatic condition).

117 Fig 1: The mass loss for the ceramic backed samples for the (a) 29 mm sample and (b) the
 118 4.5mm sample. The dotted lines in (a) are repeat experiments.

119 Fig 2: 29 mm sample after being tested in the Cone Calorimeter. (a) shows the block of the
 120 sample with carbon fibers oxidized on the surface and the rest of the sample being pyrolysed.
 121 (b) shows the different layers of carbon fiber detached after pyrolysis.


122 Fig 3: The mass loss for the aluminum backed samples for the (a) 29 mm sample and (b) the 4.5
 123 mm sample.

124 In the second stage, samples were further tested under 10 kW/m^2 and 30 kW/m^2 , with 1 mm thick
 125 Inconel sheathed N-type and 1.5 mm K-type thermocouples inserted in the CFRP at different
 126 depths (nominally at 3, 8, 13, 18 and 23 mm from the top surface) and a 1.5 mm thick K-type
 127 thermocouple inserted in the aluminum block to allow a better quantification of the back
 128 boundary condition. Two experiments were run at 30 kW/m^2 with six thermocouples inserted
 129 from the back, and another two with four thermocouples from the side so that the conduction
 130 error from the thermocouples would be minimized [14]. Three experiments were run for the for

131 the 10 kW/m^2 case. The main error included by thermocouple measurements was associated with
 132 incorrect positioning of thermocouples, considered as $\pm 2 \text{ mm}$. Samples were cut after the test
 133 and a more precise location of the thermocouple was established and the position corrected. The
 134 total mass loss was also measured for these tests.

135 The second series provided the temperature data that allowed further modeling exercises of
 136 varying complexity. The 10 kW/m^2 case represents a case in which there is negligible chemical
 137 reaction and the sample behaves as though inert (confirmed by the low temperature) and the
 138 30 kW/m^2 case represents a case where pyrolysis would be obtained. A pilot was not used so that
 139 flaming ignition would not be achieved, thus eliminating the need to quantify the convective and
 140 radiative heat flux from the flame.

141 Temperature measurements from stage 2 are shown in Fig 4. All data from thermocouples is
 142 presented, and remeasured thermocouple locations are noted. Repeatability from experiments is
 143 shown to be relatively good. Wherever discrepancies are observed, these are attributed to error in
 144 the location, as it can be seen that for all experiments the temperature of the aluminum block
 145 (29 mm) followed the same temperature evolution. Experiments at 10 kW/m^2 show that the
 146 maximum temperature near the surface was below 300°C , thus confirming that no significant
 147 pyrolysis would occur. For 30 kW/m^2 , temperatures 2 mm beneath the surface reach maximum
 148 values near 500°C , confirming the composite experienced pyrolysis of the epoxy, oxidation of
 149 the char residue from the epoxy pyrolysis, and that carbon fibers did not oxidize.

150 Fig 4: Temperatures at locations measured from the heated surface for (a) 10 kW/m^2 and (b)
 151 30 kW/m^2 . Line style signifies repeat experiments.

152 3. Computational Model and Uncertainty Quantification Methodology

153 The pyrolysis and smolder of the carbon fiber is computationally modeled using the Sierra
 154 Thermal/Fluids code, Aria, a multiphysics finite element code created at Sandia National
 155 Laboratories [14]. The composite is modeled as a porous media, which assumes that there are
 156 two phases, the condensed phase and the gas phase. The carbon fiber composite has a certain
 157 porosity, which is a function of the decomposition reaction. In the gas phase, Darcy's law is used
 158 to approximate the flow of the fluid and the continuity, species, and enthalpy equations are
 159 solved. Gases are allowed to enter and exit the domain at specified boundaries. In the continuity
 160 equation, density is related to pressure through the ideal gas law so that the gas pressure can be
 161 solved. In the condensed phase, the species and enthalpy equations are solved, and the two
 162 phases are coupled through source terms in the species equations and a volumetric heat transfer
 163 term in the enthalpy equations. This derivation is based on the model by Lautenberger *et al.* [15]

164 The solid phase continuity equation is:

$$\frac{\partial \rho_b}{\partial t} = -\dot{\omega}_{fk}''' \quad (1)$$

165 where ρ_b is the bulk density, and $\dot{\omega}_{fk}'''$ is the formation rate of gas phase mass for the k^{th} species
166 from the solid phase. The porous gas phase continuity equation is:

$$\frac{\partial(\bar{\psi}\rho_g)}{\partial t} + \frac{\partial(\rho_g u_{j,g})}{\partial x_j} = \dot{\omega}_{fk}''' \quad (2)$$

167 where $\bar{\psi}$ is the mixture averaged condensed phase porosity, ρ_g is the gas density, and $u_{j,g}$ is the
168 velocity of the gas using the Darcy approximation, which approximates the momentum equation:

$$u_{j,g} = -\frac{\bar{K}}{\mu_g} \left(\frac{\partial p_g}{\partial x_j} + \rho_g g_j \right) \quad (3)$$

169 where \bar{K} is the mixture averaged solid phase permeability tensor, μ_g is the gas phase viscosity
170 and g_j is the gravity vector. The ideal gas law is used to relate the pressure to the density

$$\rho_g = \frac{\bar{M}p_g}{RT_g} \quad (4)$$

171 where \bar{M} is the mass averaged molecular weight, R is the gas constant, and T_g is the gas
172 temperature. The final porous gas phase continuity-momentum equation is then:

$$\frac{\partial}{\partial t} \left(\frac{\bar{M}p_g \bar{\psi}}{RT_g} \right) + \frac{\partial}{\partial x_j} \left(\frac{\bar{M}p_g}{RT_g} \frac{\bar{K}}{\mu_g} \left(\frac{\partial \rho_g}{\partial x_j} + \frac{\bar{M}p_g}{RT_g} g_j \right) \right) = \dot{\omega}_{fk}''' \quad (5)$$

173 The condensed phase species equation is:

$$\frac{\partial(\rho_b Y_k)}{\partial t} = \dot{\omega}_{fk}''' - \dot{\omega}_{dk}''' \quad (6)$$

174 where $\dot{\omega}_{fk}''' - \dot{\omega}_{dk}'''$ is the difference between the formation and destruction rates of gas phase
175 mass for the k^{th} species and Y_k is the condensed phase mass fraction of the k^{th} species. The gas
176 phase species is:

$$\frac{\partial(\bar{\psi}\rho_g Y_{k,g})}{\partial t} + \frac{\partial(\rho_g u_{j,g} Y_{k,g})}{\partial x_j} = -\frac{\partial q_{k,j}^{Y,g}}{\partial x_j} + (\dot{\omega}_{s,fk}''' - \dot{\omega}_{s,dk}''') + (\dot{\omega}_{g,fk}''' - \dot{\omega}_{g,dk}''') \quad (7)$$

177 where $Y_{k,g}$ is the gas phase mass fraction of the k^{th} species, $(\dot{\omega}_{s,fk}''' - \dot{\omega}_{s,dk}''')$ is the difference
178 between the formation and destruction rates for solid phase reactions and $(\dot{\omega}_{g,fk}''' - \dot{\omega}_{g,dk}''')$ is for
179 gas phase reactions. $q_{k,j}^{Y,g}$ is the gas phase species diffusion flux, defined as:

$$q_{k,j}^{Y,g} = -\bar{\psi}\rho_g D_{k,g} \frac{\partial Y_{k,g}}{\partial x_j} \quad (8)$$

180 where $D_{k,g}$ is the gas phase mass diffusivity for the k^{th} species. The gas phase enthalpy is:

$$\begin{aligned} \frac{\partial(\bar{\psi}\rho_g h_g)}{\partial t} + \frac{\partial(\rho_g u_{j,g} h_g)}{\partial x_j} \\ = -\frac{\partial q_{k,j}^{h,g}}{\partial x_j} + \frac{\partial(\bar{\psi}p_g)}{\partial t} + h_{cv}(\bar{T} - T_g) + \sum_k (\dot{\omega}_{s,fk}''' - \dot{\omega}_{s,dk}''') h_{k,g} \end{aligned} \quad (9)$$

181 where h_g is the mixture averaged gas phase enthalpy, h_{cv} is the volumetric heat transfer
 182 coefficient, \bar{T} is the porous condensed phase temperature, T_g is the gas phase temperature, $h_{k,g}$
 183 is the gas phase enthalpy of the k^{th} species. $q_j^{h,g}$ is the gas phase energy flux and is modeled as:

$$q_j^{h,g} = -\bar{\psi}\rho_g D_g \frac{\partial h_g}{\partial x_j} \quad (10)$$

184 where D_g is the mixture averaged gas phase mass diffusivity. The condensed phase enthalpy is
 185 defined as:

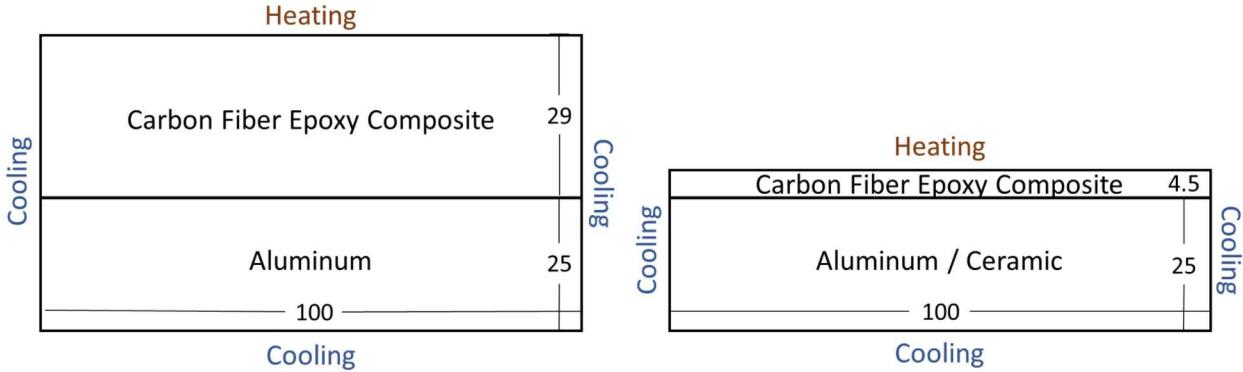
$$\frac{\partial(\bar{\rho}c_p\bar{T})}{\partial t} = -\frac{\partial q_j^h}{\partial x_j} + h_{cv}(T_g - \bar{T}) \quad (11)$$

186 where c_p is the specific heat in the condensed phase and q_j^h is the condensed phase energy
 187 flux:

$$q_j^{h,g} = -(k + k_e) \frac{\partial \bar{T}}{\partial x_j} \quad (12)$$

188 where k is the thermal conductivity and k_e is the effective conductivity for radiant heat transfer
 189 in optically thick media.

190 3.1 Model application

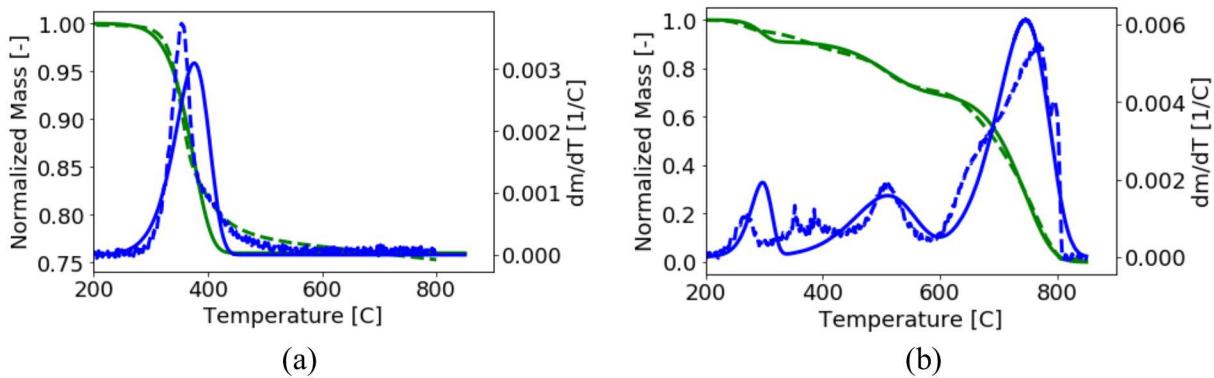

191 The model was applied to particular conditions defined by the experimental program. The model
 192 is first compared to the experimental data where 29 mm thick samples with the aluminium
 193 backing material were exposed to a flux of 30 kW/m², and temperature and mass loss data were
 194 collected. It is then compared to the experimental data where 4.5 mm thick samples with the two
 195 backing materials (aluminum and ceramic) were exposed to 30kW/m² and 80kW/m². As
 196 discussed in previous section, only mass loss data was collected for this series. A schematic of
 197 both samples is shown in Fig 5.

198 The domain of the simulation is designed to be a 2D representation of the experiments. For the
 199 numerical simulation (for both thicknesses), a structured mesh with an element edge length of
 200 0.45mm was employed. The heat flux was applied on the top surface of the carbon fiber. A

201 convective boundary condition and a radiative boundary condition were applied to all surfaces.
 202 Contact resistance was applied between the sample and the backing material. The values for the
 203 boundary conditions are in Table 1.

Parameter	Value / Correlation	Uncertainty	Units
Heat Flux (q)	30	$\pm 3\%$	kW/m^2
Convective Heat Transfer Coefficient (h_{cv})	5	$\pm 20\%$	$\text{W}/(\text{m}^2\text{K})$
Contact Resistance (R_c)	$0.0003e^{0.0034T}$	-90% +900%	$\text{m}^2\text{K}/\text{W}$

204 Table 1: Boundary Conditions. The temperature range for contact resistance is 300K to 1000K


205
 206 Fig 5: Schematic of the model representing the experiments. Dimensions are in mm.
 207 The material properties used for the backing material are listed in Table 2 [16, 17]. The
 208 properties for the carbon fiber epoxy composite are presented in Table 3 [1]. The properties are
 209 defined for the constituents of the carbon fiber epoxy composite and are volume averaged to
 210 account for the changes in the material properties due to decomposition. Initially, the
 211 composition of the composite material is 70% carbon fiber, 30% epoxy. All other constituents
 212 are 0%. It is assumed that the distribution of the epoxy and carbon fiber is uniform throughout
 213 the sample. As the total density of the sample was measured as $1360 \text{ kg}/\text{m}^3$, the initial density
 214 of the epoxy is $408 \text{ kg}/\text{m}^3$ and the carbon fiber $952 \text{ kg}/\text{m}^3$. The difference between these densities
 215 and those listed in Table 3 are due to the density here being per total volume of the composite
 216 (e.g. the mass of the carbon fiber over the volume of the composite), whereas those in the table
 217 are per the singular material volume (e.g. the mass of the carbon fiber over the volume of the
 218 carbon fiber).

Parameter	Value / Correlation		Uncertainty	Units
	Aluminum	Ceramic		
Conductivity (k)	$-.0004 T^2 + 0.4711T + 52.8$	0.7	$\pm 10\%$	$\text{W}/(\text{mK})$
Density (ρ)	2700	1200	$\pm 10\%$	kg/m^3
Specific Heat (c_p)	$0.5039 T + 745.72$	800	$\pm 10\%$	$\text{J}/(\text{kgK})$
Emissivity (ϵ)	0.1	0.5	$\pm 10\%$	-

219 Table 2: Nominal material properties and uncertainty for backing material. The temperature
 220 range for the aluminum conductivity is 300K to 854K, for aluminum specific heat it is 200K to
 221 600K.

Parameter	Value / Correlation	Uncertainty	Units
Conductivity (k)			W/(mK)
<i>Epoxy</i>	0.145	$\pm 35\%$	
<i>Carbon Fiber</i>	$0.335 \ln(T) - 1.8257$	$\pm 35\%$	
<i>Char</i>	0.029	$\pm 70\%$	
<i>Residue</i>	0.00725	$\pm 70\%$	
Density (ρ)			kg/m ³
<i>Epoxy</i>	408	$\pm 20\%$	
<i>Carbon Fiber</i>	952	$\pm 20\%$	
<i>Char</i>	650	$\pm 20\%$	
<i>Residue</i>	2000	$\pm 20\%$	
Specific Heat (c_p)			J/(kgK)
<i>Epoxy</i>	866	$\pm 20\%$	
<i>Carbon Fiber</i>	$4.0997 T - 369.12$	$\pm 20\%$	
<i>Char</i>	936	$\pm 20\%$	
<i>Residue</i>	866	$\pm 20\%$	
Permeability (K)			m ²
<i>Epoxy</i>	2.42e-15	-90% +900%	
<i>Carbon Fiber</i>	2.42e-14	-90% +900%	
<i>Char</i>	2.83e-12	-90% +900%	
<i>Residue</i>	2.42e-11	-90% +900%	
Radiative Conductivity (k_e)	$16/(3 * 5000)\sigma T^3$	-60% +400%	W/(mK)
Emissivity (ϵ)	0.91	-10% + 8%	-
Initial Carbon Fiber (%CF)	70	$\pm 10\%$	%

223 Table 3: Nominal material properties and uncertainty for the composite. The simulation
224 properties are defined as the constituents of the carbon fiber epoxy composite and are volume
225 averaged. The temperature range for the carbon fiber conductivity and specific heat for the
226 simulation is 300K to 2328K.

227 Fig 6: Comparison of the mechanism (solid) to TGA (dashed) [12] for normalized mass loss
228 (green) and the derivative of normalized mass loss (blue) for (a) N₂ purge gas and (b) air purge
229 gas. Note the different scale of the y-axis for (a) and (b).

230 The TGA results lead to the defining of a chemical mechanism shown in equation 13. As
231 discussed in the experimental section, the epoxy decomposition reaction is likely a non-oxidative

reaction, due to the charring behavior of the composite restricting the flow of oxygen deeper in the composite, and thus should be modeled using results from TGA with a nitrogen purge, rather than in air. For this mechanism, the reaction kinetics for (1a) will be determined using TGA with a nitrogen purge, and the kinetics for (1b), (2), and (3) using TGA with an air purge. The comparison to TGA at 5 °C/min is shown in Fig 6. To apply this mechanism to the model, reaction (1a) is used for the epoxy decomposition, and (1b) is discarded. This merged mechanism is shown in Fig 7.

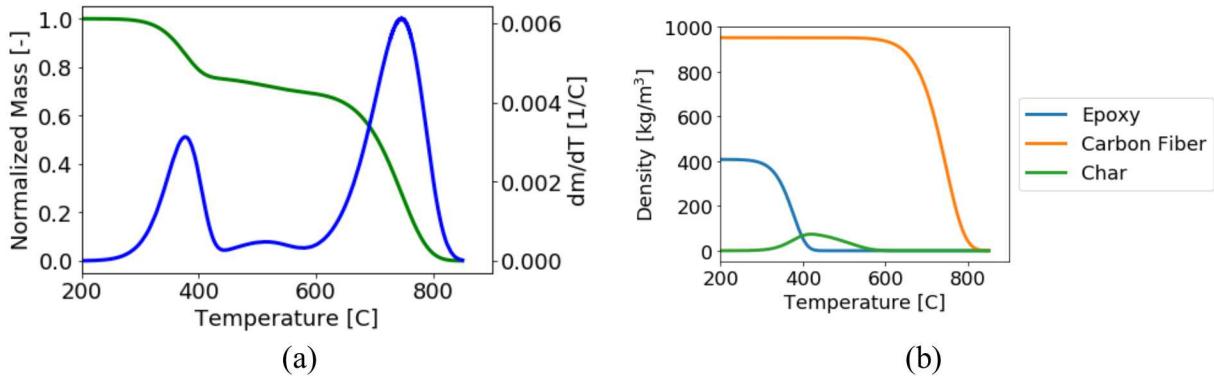
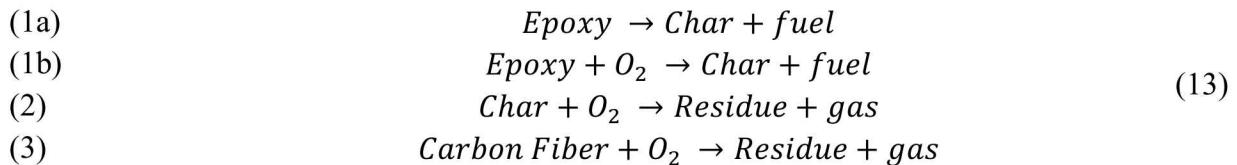



Fig 7: (a) Comparison of the combined mechanism for normalized mass loss (green) and the derivative of normalized mass loss (blue). (b) Depletion of solid-phase species for combined decomposition mechanism

242

	A [1/s]	E_a [J/kmol]		v [-]		H [kJ/kg]		
Reaction 1a	3.33 e6	±10%	1.13 e8	±0%	0.2	±20%	0	±10 [kJ/kg]
Reaction 1b	1.33 e11	-	1.47 e8	-	0.7	-	0	-
Reaction 2	1895	±10%	9.15 e7	±0%	.0001	±0%	12730	±20%
Reaction 3	9.48 e6	±10%	1.90 e8	±0%	.0001	±0%	24770	±20%

Table 4: Kinetic parameters. A is pre-exponential factor, E_a is the activation energy, v is the stoichiometric coefficient of the solid-phase product (on a mass basis), and H is the heat release.

Model uncertainty and sensitivity are evaluated with Dakota [18] using a Latin Hypercube Sampling (LHS) approach. This method requires a distribution of the input parameters; a uniform distribution is assumed. The range for the uncertainty is tabulated for the property in Table 1 through Table 4. 270 simulations exploring this parameter space were run for each of the configurations. When the LHS method is used, correlation coefficients can be calculated. The Pearson correlation was used to calculate the sensitivity of the input parameter to the output response [19]. Of note, the specific heat and density are varied as one term, ρc_p the volumetric heat capacity, since the uncertainty is a multiplier, and these terms appear together. In addition,

253 this term is varied for the entire composite, rather than each constituent material to prevent
254 mismatches between products and reactants.

255 Assessing the experimental uncertainty was more difficult, as due to a limited number of
256 samples, repeat experiments were not always possible. For the mass loss data for the 29 mm
257 thick sample, four repeat experiments were performed. In this case, quantifying the uncertainty
258 was straight forward, as a standard deviation can be calculated from this data. However, for the
259 4.5 mm thick samples, there were no repeat experiments. Therefore, the data obtained in the 29
260 mm thick experiments was used to manufacture a possible uncertainty. To do this, first the
261 variance (σ_{total}^2) was calculated for the 29 mm thick data set. Then it was assumed that the
262 variance is made up of the uncertainty associated with the instrument ($\sigma_{instrument}$) in
263 combination with the uncertainty associated with other aspects of the test ($\sigma_{repeatability}$).

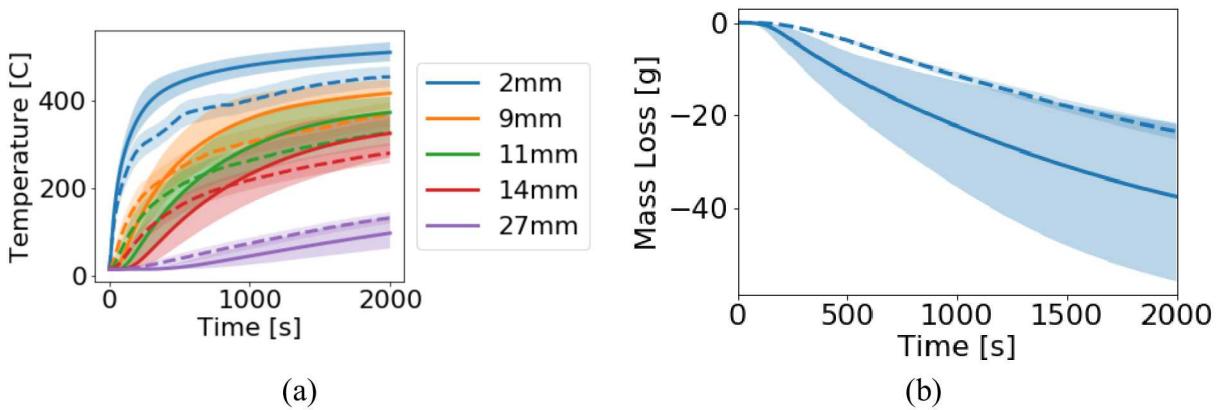
$$\sigma_{total}^2 = \sigma_{instrument}^2 + \sigma_{repeatability}^2 \quad (14)$$

264 Since the σ_{total}^2 and $\sigma_{instrument}$ are known, $\sigma_{repeatability}$ can be solved for. In order to apply
265 this to the 4.5mm thick samples, it was necessary to know what $\sigma_{repeatability}$ was as a function
266 of mass loss. Therefore, the uncertainty at each time (t) was normalized by the data set averaged
267 mass loss ($ML_{average}$) at that time. This quantity was then averaged over time.

$$\sigma_{repeatability,avg} = \left(\sum_{t=0}^{t=n} \frac{\sqrt{\sigma_{repeatability,t}^2}}{ML_{average,t}} \right) / n \quad (15)$$

268 This yielded an uncertainty of 0.073 per lost gram of material. When combined back with the
269 instrument uncertainty (0.02g), it gives an overall uncertainty of 7.6%, which can now be used as
270 a manufactured uncertainty for the 4.5mm thick results.

271 A similar issue existed for the thermocouples. While repeat experiments were performed, the
272 thermocouples were not in the same location in the four repeats. In addition, the largest driver of
273 uncertainty here was the location of the thermocouple. It was assumed that the uncertainty could
274 be represented as:

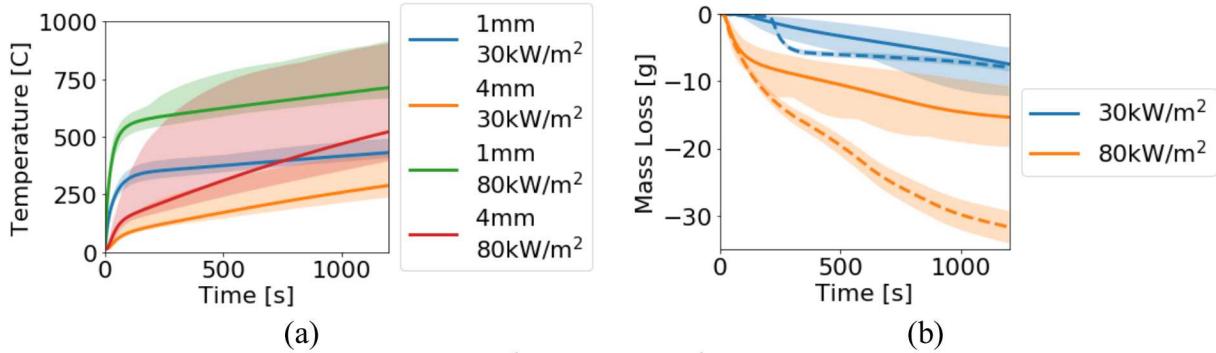

$$\sigma_{total}^2 = \sigma_{instrument}^2 + \sigma_{location}^2 \quad (16)$$

275 The technique used to drill the holes was accurate within ± 2 mm. In order to determine the
276 uncertainty in location, the temperature ± 2 mm from the location of interest was interpolated, or
277 if there was a thermocouple in that location, it was given. Assuming a Gaussian distribution of
278 likely thermocouple locations, the temperature uncertainty due to location was calculated. This
279 was then combined with the instrument uncertainty (0.75%) to create an overall temperature
280 uncertainty.

281 4. Modeling results

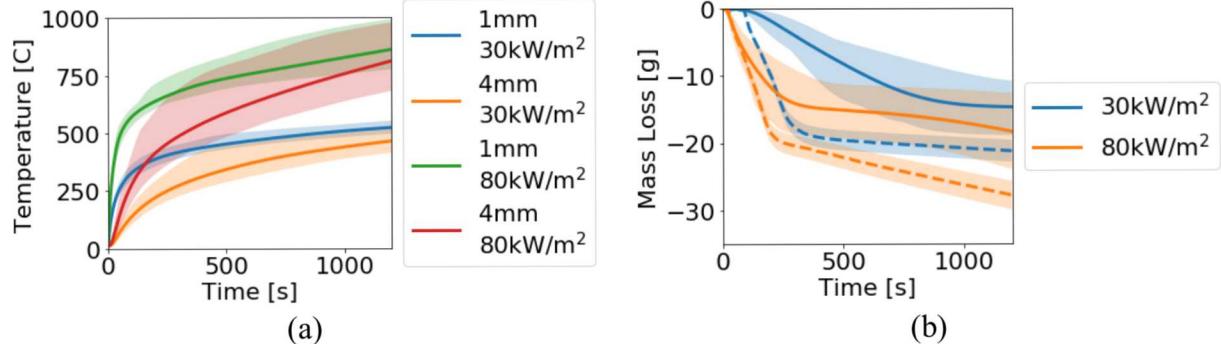
282 Fig. 8 shows the temperature and mass loss prediction along with the experimental results for the
283 29 mm, 30kW/m^2 , aluminum backed sample. The predictions are presented as the average of the
284 270 runs (the solid line), as well as the range of the predictions (the shaded area). The

285 uncertainty in the temperature prediction is largest for the middle of the sample, (13 and 17mm),
 286 which is also the location of poor agreement between the predictions and the experiment. The
 287 mass loss is over-predicted; however, the shape of the mass loss curve matches well with the
 288 experiment. Table 5 lists the top three input parameters to which each output response is most
 289 sensitive. The temperatures are sensitive to the material properties of the composite, specifically
 290 the volumetric heat capacity, the conductivity, the effective conductivity, and the emissivity. As
 291 expected, deeper in the composite, the emissivity matters less, and the conductivities matter
 292 more. The large uncertainties and poor predictions for the middle of the sample indicates that
 293 better models for the volumetric heat capacity and the conductivities are needed. For the mass
 294 loss, the initial percentage of carbon fiber is most important, followed by the composite material
 295 properties. Since the initial percentage of carbon fiber governs the mass of both the carbon fiber
 296 and epoxy, it directly affects the mass loss, since at temperatures below 500°C, only the epoxy
 297 has reacted.



298 Fig 8: Comparison of (a) temperature prediction (solid) to experiment (dashed) [11] for six
 299 locations measured from the heated surface and (b) the predicted (solid) and experimental
 300 (dashed) mass loss for the 29mm, 30kW/m², aluminum backed sample. Predictions are presented
 301 with min/max bounds and experimental results with one standard deviation of uncertainty.

302 For the thick sample at a low heat flux, the properties of the aluminum and the contact between
 303 the sample and the backing material are of minimal importance. However, this is not so for the
 304 thinner samples. Fig 9 shows the temperature and mass loss predictions for the aluminum
 305 backing material at 30 kW/m² and 80 kW/m² flux, while Fig 10 shows the same information for
 306 the ceramic. Temperature data was not measured experimentally, therefore only experimental
 307 mass loss data is presented. The mass loss predictions are not as good as in the thicker sample
 308 because gas-phase ignition occurred but is not modeled. There is qualitative agreement,
 309 particularly for the ceramic sample at the higher flux. The mass loss and temperatures between
 310 the two holder materials differ because one is a heat sink, and the other is an insulator. The
 311 temperatures at 1 mm and 4 mm are spread further apart in the aluminum than in the ceramic –
 312 the sample acts thermally thin in the ceramic case, and thermally thick in the aluminum case. The
 313 mass loss change reflects this. The sample heats up more uniformly, causing the higher initial
 314 mass loss. The plateau in the ceramic backed samples is caused when the epoxy has finished
 315 burning off, but the carbon fiber reaction has not yet initiated. In the aluminum backed sample,
 316 the epoxy is pyrolyzing for most of the simulation.


2mm	9mm	11mm	14mm	27mm	Mass Loss
Composite ρc_p	Composite ρc_p	Composite ρc_p	Composite ρc_p	Carbon fiber k	$\%CF$
Composite ϵ	Carbon fiber k	Carbon fiber k	Carbon fiber k	Composite ρc_p	Composite ρc_p
$\%CF$	Composite ϵ	Composite ϵ	Composite k_e	Epoxy k	Carbon fiber k

317 Table 5: Top three sensitive input parameters for each output for the 29mm, 30kW/m², aluminum
318 backed sample.

319 Fig 9: For the 4.5mm sample at 30kW/m² and 80kW/m² flux with the aluminum backing
320 material (a) temperature prediction for two locations measured from the heated surface and (b)
321 the predicted (solid) and experimental (dashed) mass loss [12]. Predictions are presented with
322 min/max bounds.

323 Table 6 lists the top three input parameters that each output response is most sensitive to, for all
324 heat fluxes and backing materials. For the mass loss, the important parameters remain similar for
325 all the heat fluxes and backing material. In all cases, most important is the initial percentage of
326 carbon fiber. The contact resistance, the stoichiometric coefficient of the char in reaction 1a, and
327 the conductivity of the carbon fiber are also important. For the mass loss, the range of the
328 uncertainty bands is not significantly different between the backing materials and the heat fluxes.
329 However, this is not the case with the temperature. Not only does the uncertainty range increase
330 with the flux, but the range is greater in the aluminum backed than in the ceramic backed
331 samples. For example, in the higher heat flux at 4mm, the range at 1200 seconds is 296°C for the
332 ceramic, but 511°C for the aluminum. In addition, the average temperature for the aluminum is
333 near the lower bound, rather than in the middle of the range as it is for the ceramic. The standard
334 deviations for the ceramic and the aluminum are much closer to each other – 60°C and 79°C,
335 respectively. This suggests outlying simulations in the aluminum case where a much larger
336 temperature than average is predicted. Further examination of the data showed that in the case
337 where the contact resistance was at the upper bound of the range, these outlying simulations were
338 generated. This is also reflected in the sensitivities, where for the aluminum the contact
339 resistance plays a large role, whereas it does not appear for the ceramic. In addition, the
340 volumetric heat capacity of the aluminum is important for the prediction of the temperatures,
341 whereas the ceramic's volumetric heat capacity only appears once. This all points to the
342 interaction between the backing material and the sample being more important when it is a heat
343 sink, opposed to an insulator.

344 Fig 10: For the 4.5mm sample at 30kW/m² and 80kW/m² flux with the ceramic backing material
 345 (a) temperature prediction for two locations measured from the heated surface and (b) the
 346 predicted (solid) and experimental (dashed) mass loss [12]. Predictions are presented with
 347 min/max bounds

	1mm	2mm	3mm	4mm	Mass Loss
Al 30 kW/m ²	Carbon fiber k	R_c	R_c	Carbon fiber k	%CF
	Composite ϵ	Carbon fiber k	Carbon fiber k	R_c	Carbon fiber k
	R_c	Aluminum ρc_p	Aluminum ρc_p	Aluminum ρc_p	R_c
Al 80 kW/m ²	R_c	R_c	R_c	R_c	%CF
	Composite ϵ	Composite ϵ	Carbon fiber k	Carbon fiber k	R_c
	Carbon fiber k	Carbon fiber k	Composite k_e	Aluminum ρc_p	ν
Ceramic 30 kW/m ²	Composite ϵ	Composite ρc_p	Carbon fiber k	Carbon fiber k	%CF
	Composite ρc_p	Carbon fiber k	Composite ρc_p	Composite ρc_p	R_c
	Carbon fiber k	Composite ϵ	Composite ϵ	Ceramic ρc_p	ν
Ceramic 80 kW/m ²	Composite ϵ	Composite ϵ	Carbon fiber k	Carbon fiber k	%CF
	R_c	R_c	R_c	R_c	ν
	Composite ρc_p	Carbon fiber k	Composite ϵ	Composite ϵ	Carbon fiber k

348 Table 6: Top three input parameters that each output response is most sensitive to for the 4.5mm,
 349 samples.

350

351 5. Conclusions

352 An uncertainty estimation and sensitivity study was conducted for a model of decomposing
 353 carbon fiber epoxy composite. Five sample configurations were considered:

354 (1) 29mm thick sample on an aluminum backing material with an external flux of 30kW/m²
 355 (2) 4.5mm thick sample on an aluminum backing material with an external flux of 30kW/m²
 356 (3) 4.5mm thick sample on an aluminum backing material with an external flux of 80kW/m²

357 (4) 4.5mm thick sample on a ceramic backing material with an external flux of 30kW/m²

358 (5) 4.5mm thick sample on a ceramic backing material with an external flux of 80kW/m².

359 Configuration (1) was compared to both temperature and mass loss experimental data. The
360 predictions matched the data well, though the middle of the sample had the worst predictions and
361 most uncertainty. Mass loss was over-predicted, though showed the correct trend. This indicates
362 that changes in the material properties that would better predict the heat transfer properties of the
363 composite, as well as an accurate knowledge of the percentage of epoxy vs carbon fiber in the
364 initial sample would improve the prediction. The temperatures were most sensitive to the
365 properties of the composite, specifically the conductivities and the emissivity. The mass loss was
366 sensitive to the initial ratio of carbon fiber to epoxy, as well as the volumetric heat capacity and
367 the conductivity. For the thinner samples, (2)-(5), uncertainty in the temperature prediction
368 changed with both heat flux and backing material. The aluminum backed samples were more
369 sensitive to the contact resistance than the ceramic. High values of contact resistance created
370 outlying temperature profiles with high temperatures in the aluminum backed cases. The mass
371 loss uncertainty, however, was more uniform across heat fluxes and backing materials.

372 **6. Acknowledgements**

373 The authors would like to acknowledge the valuable contributions of Paulo Pironi to this work.
374 Sandia National Laboratories is a multimission laboratory managed and operated by National
375 Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of
376 Honeywell International, Inc., for the U.S. Department of Energy National Nuclear Security
377 Administration under contract DE-NA0003525. The reaseach leading to the modeling results has
378 received funding from the Sandia Advanced Simulation and Computing program. The research
379 leading to the experimental results has received funding from the European Union's Seventh
380 Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology
381 Initiative under grant agreement n° 325329.

382 **7. References**

383 [1] J. G. Quintiere, R. N. Walters, and S. Crowley, "Flammability Properties of Aircraft
384 Carbon fiber Structural Composite," 2007.

385 [2] A. B. Dodd, B. Shelden, and K. L. Erickson, "Numerical Simulation of Decomposition
386 and Combustion of an Epoxy-Carbon fiber Composite," in Interflam, 2011.

387 [3] M. B. McKinnon, Y. Ding, S. I. Stoliarov, S. Crowley, and R. E. Lyon, "Pyrolysis model
388 for a carbon fiber/epoxy structural aerospace composite," J. Fire Sci., vol. 35, no. 1, pp. 36–61,
389 2017.

390 [4] Y. Bai and T. Keller, "Time dependence of material properties of FRP composites in
391 fire," J. Compos. Mater., vol. 43, no. 21, pp. 2469–2484, 2009.

392 [5] J. Zhang, M. A. Delichatsios, T. Fateh, M. Suzanne, and S. Ukleja, "Characterization of
393 flammability and fire resistance of carbon fiber reinforced thermoset and thermoplastic
394 composite materials," J. Loss Prev. Process Ind., vol. 50, pp. 275–282, Nov. 2017.

395 [6] H. L. N. Mcmanus and G. S. Springer, "High Temperature Thermomechanical Behavior
396 of Carbon-Phenolic and Carbon-Carbon Composites, I. Analysis," *J. Compos. Mater.*, vol. 26,
397 no. 2, pp. 206–229, 1992.

398 [7] A. P. Mouritz et al., "Review of fire structural modelling of polymer composites,"
399 *Compos. Part A Appl. Sci. Manuf.*, vol. 40, no. 12, pp. 1800–1814, 2009.

400 [8] N. Grange, K. Chetehouna, N. Gascoin, A. Coppalle, I. Reynaud, and S. Senave, "One-
401 dimensional pyrolysis of carbon based composite materials using FireFOAM," *Fire Saf. J.*, vol.
402 97, pp. 66–75, Apr. 2018.

403 [9] P. Krysl, W. T. Ramroth, L. K. Stewart, and R. J. Asaro, "Finite element modelling of
404 fiber reinforced polymer sandwich panels exposed to heat," *Int. J. Numer. Methods Eng.*, vol. 61,
405 no. 1, pp. 49–68, 2004.

406 [10] J. P. Hidalgo, R. Hadden, S. Welch, and P. Pironi, "Effect of Thickness on the Ignition
407 Behavior of Carbon Fiber Composite Materials used in High Pressure Vessels," *Eighth Int.*
408 *Semin. Fire Explos. Hazards*, pp. 353–363, 2016.

409 [11] J. P. Hidalgo, P. Pironi, R. M. Hadden, and S. Welch, "A framework for evaluating the
410 thermal behaviour of carbon fiber composite materials," *Eur. Symp. Fire Saf. Sci.*, pp. 195–200,
411 2015.

412 [12] J. P. Hidalgo, R. Hadden, S. Welch, and P. Pironi, "Experimental Study of the Burning
413 Behavior of a Commercial Carbon Fiber Composite Material used in High Pressure Vessels," in
414 *ECCM17 - 17th European Conference of Composite Materials*, 2016, p. 8.

415 [13] P. K. Notz, S. R. Subia, M. M. Hopkins, H. K. Moffat, D. R. Noble, and T. O. Okusanya,
416 "SIERRA Multimechanics Module: Aria User Manual," Albuquerque, NM, 2016.

417 [14] J. Beck, "Thermocouple Temperature Disturbances in Low Conductivity Materials,"
418 *Journal of Heat Transfer*, vol. 84, no. 2, p. 124. 1962

419 [15] C. Lautenberger and C. Fernandez-Pello, "Generalized pyrolysis model for combustible
420 solids," *Fire Saf. J.*, vol. 44, no. 6, pp. 819–839, 2009.

421 [16] American Society for Metals. Metals Handbook Committee, *ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials*. 1990.

422 [17] F. Incropera and D. DeWitt, *Fundamentals of Heat and Mass Transfer*. New York: J. Wiley, 2002.

423 [18] Dakota Core Team, "Dakota, A Multilevel Parallel Object-Oriented Framework for
424 Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity
425 Analysis: Version 6.0 Users Manual, SAND2014-4633," 2014.

426 [19] S. N. Scott, A. B. Dodd, M. E. Larsen, J. M. Suo-Anttila, and K. L. Erickson, "Validation
427 of Heat Transfer, Thermal Decomposition, and Container Pressurization of Polyurethane Foam
428 Using Mean Value and Latin Hypercube Sampling Approaches," *Fire Technol.*, vol. 52, no. 1,
429 pp. 121–147, 2016.

430

431

432

433 **Figure captions**

434 Fig 1: The mass loss for the ceramic backed samples for the (a) 29 mm sample and (b) the
435 4.5mm sample. The dotted lines in (a) are repeat experiments.

436 Fig 2: 29 mm sample after being tested in the Cone Calorimeter. (a) shows the block of the
437 sample with carbon fibers oxidized on the surface and the rest of the sample being pyrolysed. (b)
438 shows the different layers of carbon fiber detached after pyrolysis.

439 Fig 3: The mass loss for the aluminum backed samples for the (a) 29 mm sample and (b) the 4.5
440 mm sample.

441 Fig 4: Temperatures at locations measured from the heated surface for (a) 10 kW/m² and (b) 30
442 kW/m². Line style signifies repeat experiments.

443 Fig 5: Schematic of the model representing the experiments. Dimensions are in mm.

444 Fig 6: Comparison of the mechanism (solid) to TGA (dashed) [12] for normalized mass loss
445 (green) and the derivative of normalized mass loss (blue) for (a) N2 purge gas and (b) air purge
446 gas. Note the different scale of the y-axis for (a) and (b).

447 Fig 7: (a) Comparison of the combined mechanism for normalized mass loss (green) and the
448 derivative of normalized mass loss (blue). (b) Depletion of solid-phase species for combined
449 decomposition mechanism

450 Fig 8: Comparison of (a) temperature prediction (solid) to experiment (dashed) [11] for six
451 locations measured from the heated surface and (b) the predicted (solid) and experimental
452 (dashed) mass loss for the 29mm, 30kW/m², aluminum backed sample. Predictions are presented
453 with min/max bounds and experimental results with one standard deviation of uncertainty.

454 Fig 9: For the 4.5mm sample at 30kW/m² and 80kW/m² flux with the aluminum backing
455 material (a) temperature prediction for two locations measured from the heated surface and (b)
456 the predicted (solid) and experimental (dashed) mass loss [12]. Predictions are presented with
457 min/max bounds

458 Fig 10: For the 4.5mm sample at 30kW/m² and 80kW/m² flux with the ceramic backing material
459 (a) temperature prediction for two locations measured from the heated surface and (b) the
460 predicted (solid) and experimental (dashed) mass loss [12]. Predictions are presented with
461 min/max bounds

462 Table 1: Boundary Conditions. The temperature range for contact resistance is 300K to 1000K

463 Table 2: Nominal material properties and uncertainty for backing material. The temperature
464 range for the aluminum conductivity is 300K to 854K, for aluminum specific heat it is 200K to
465 600K.

466 Table 3: Nominal material properties and uncertainty for the composite. The simulation
467 properties are defined as the constituents of the carbon fiber epoxy composite and are volume
468 averaged. The temperature range for the carbon fiber conductivity and specific heat for the
469 simulation is 300K to 2328K.

470 Table 4: Kinetic parameters. A is pre-exponential factor, Ea is the activation energy, v is the
471 stoichiometric coefficient of the solid-phase product (on a mass basis), and H is the heat release.

472 Table 5: Top three sensitive input parameters for each output for the 29mm, 30kW/m², aluminum
473 backed sample.

474 Table 6: Top three input parameters that each output response is most sensitive to for the 4.5mm,
475 samples.