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| Introduction/Motivation

= We are interested in modeling a variety of discharge situations: from streamers at
atmospheric pressure to vacuum arcs

= We have multiple projects focused on how interactions with surfaces drive discharge

= AMPPED is investigating photoemission and ion-induced SEE from surfaces:

Photon-assisted breakdown (E. Barnat, MeVArc 2018)
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| Introduction/Motivation

= We destre predictive PIC-DSMC breakdown simulations

= Here predictive means capturing the bounds of discharge behavior due to stochastic variation of
real surfaces (variation of contaminants, grain boundaries, dislocations, etc.) as built

= It also means that we must perform rigorous Verification and Validation efforts before a model 1s
considered useful

Laser-triggered switch

(A. Fierro, MeVArc 2018):
3D Streamer evolution (A. Jindal, ICOPS 2019):




Vacuum Arc Initiation Project

= Vacuum discharge is critical to many modern devices.
= Crtical failure mechanism — Want to avoid

" Mode of operation — Want to have predictable behavior

Capacitors Safety Interlocks




Vacuum Arc Initiation Project

* Vacuum discharge is critical to many modern devices.
* Critical failure mechanism — Want to avoid

" Mode of operation — Want to have predictable behavior

= We have a project to understand vacuum field emission from well-characterized surfaces
to create physics-based models for use in large-scale PIC-DSMC breakdown simulations

* Field emission 1s necessary precursor to a breakdown event. No field emission — no breakdown.

= Employ Scanning Tunneling Microscopy and PhotoEmission Electron Microscopy to characterize
surface very locally, and then apply high fields to initiate breakdown. Very locally = ~0.1-10 nm

= Address the problem of not knowing the state prior to discharge at the location of discharge by
characterizing and then discharging.

= Apply known layers of dielectric (e.g., T102, MgO) to challenge models and begin investigation of

role of surface contaminants.

= Utilize a “meso-scale” (0.1-1.0 pm) model of the surface for PIC-DSMC simulation of breakdown



Why local characterization? =

* Fowler-Nordheim field emission:

= Typical use in macro-scale models is to curve-fit
measured j(E) from the as-built electrode

= Can result in 3 ~ 10-1000 !!!

= We want to locally characterize the surface
to eliminate {3 as a fit parameter

= Use Scanning Tunneling Microscopy (STM) and
Atomic Force Microscopy (AFM) to measure

topology (8)

= Use PhotoEmission Electron Microscopy
(PEEM) to measure work function (¢)

= Use measured distributions for ¢ and B to
inform macro-scale model for discharge
simulations




Overview

PDF These curves

0 depend on the
— = Create Pt electrode via sputter deposition surface material,
conditioning, etc.

= Controllably contaminate Pt via Atomic Layer Deposition

= Measure work function, local topology, and electron
. 2 L
emission for sample IOt N

A " Generate probability density functions (PDF) for local

work functions and effective topological field enhancement

= Incorporate measured afomic-scale distributions into
discharge simulations by populating time-varying zzeso-scale
element-based data from the PDFs

— = Compare family of plasma discharge simulations to
measured breakdown behavior

surface mesh in
the plasma code



Characterization of the Electrode Stack

= Thermal S102-S1 (100) substrate

= RF sputtered Pt metal thin film &
/10O adhesion layer

= Ambient anneal- 1 hr. at 900°C

= Polycrystalline platinum electrode TEM EDS ‘
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Characterization of the EIectrode Stack |

General cross-sectional schematic Pt windows in MgO (mask 2)

~90 nm Pt

~90 nm Pt ~40 nm ZnO
~40 nm ZnO ~100 nm SiO,
~0.5 mm Si

= To investigate surface contamination,

put down a 1nm layer of MgO

= Made “checkerboard” pattern via etch
for direct comparison of Pt versus
MgO/Pt emission and breakdown

= Use Scanning Electron Microscopy

(SEM) and Energy Dispersive X-Ray
Spectroscopy (EDS) to verify surface
composition

= Etch apparently went completely
through the Pt, but also left patchy MgO

* C contamination
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PEEM Measurement of Work Function Variation

= Measured spatial variation of local work
function using PhotoEmission Electron
Microscopy

= Variation across given Pt surface relatively small —
only a few percent

= However, ¢ is in the exponential and the tail of the
distribution can initiate field emission and eventually
breakdown

= Significant (~10%) decrease in the work
function due to surface contaminants picked up
via exposure to air

= Use the ~10nm-scale PDF’s in meso-scale

model to set element work functions in PIC-
DSMC simulations
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AFM Surface Characterization

= Actual surface has virtually no significant topology and thus 8 ~ 1 everywhere.

= To demonstrate spatial variation of field emission across the surface we show results
here based on multiplying the surface relief by 10X

Multiply z by 10x




AFM topology — topological atomic-scale 3

= Measure surface topology before breakdown using AFM:

* Load topology into Cubit and mesh the surface
in order to use electrostatic solver

= Place flat anode ~10pum from as-measured cathode (nm) /%

= Use ~1 nm elements near cathode to resolve features



Simulation of Emission from AFM Surface

= Show contours of e density just above the cathode surface

"= See several large-scale features that emit, otherwise

|
= With the resolved (Ax<10nm) mesh, simulate the emission from the AFM surface |
very little emission |

= Some clipping of the topology is seen for the largest feature E]OM

Simulate emission
in PIC-code
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AFM topology — topological atomic-scale 3

* Compute E

and A, for every element face in

norm
the resolved STM mesh
= <10nm elements; ~600K surface faces
) faces Aface
= Get projection factot, fproi =
pro] prey Z:faces Aprojface

* For present data f,,,, ~ 1.15

* Create ~10nm scale PDF of 3 = _morm

= Some elements will have <1
= Globally the surface could be tilted

= Sides of “sharp” atomic features
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Meso-scale Model for Surface Variations

* We have measured atomic-scale (1-10nm) PDI’s of the work function and topological
field enhancement factor

= Must convert these to the meso-scale (0.1-10 pm). Some options:
1. Just pick the meso-scale $ and ¢ from the atomic-scale PDFs
2. Make an effective § and ¢ to use at the meso-scale

|

3. “Brute force” — for each meso-scale element face, pick N local emitters (unique s and @)

The first option obviously has artificially large variation for different surface realizations
in simulations. We will not consider it further.

= Sometimes get an extreme tail value and then field emit based on the meso-scale element’s area

= Other times there will be no tail values picked and no field emission until much higher fields



Meso-scale Model for Surface Variations

= Can we make an effective § (and @) from the data and/or atomic-scale § PDFs?

" Measure/compute the total field emission current versus E

= Non-linear solve for B_x

Effective Beta
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This makes sense: small 3 regions “turn on”

at higher fields and pulls the effective 3 lower

The precise functional form depends on the
atomic-scale 3 PDF



Meso-scale Model for Surface Variations

= We are left with “brute force” -- for each meso-scale element face, pick N local emitters
(randomly pick unique B’s and ¢’s) from the atomic-scale measured distributions:

N = Aelement
- fproj

Aresolved

* Must scale the number of local emitters to draw:

8 local faces that the § and ¢

PDF created from
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< 4nm “meso-scale” element » Draw 8 local emitters




Meso-scale Model for Surface Variations

* However, we don’t have to store all N local emitters for each surface element face
bl

® Field emission is highly non-linear and the majority of emitters (3 and ¢) can be neglected

= Store every atomic-scale emitter ( and ¢) that appreciably contributes to the current
= A threshold current contribution of 0.1% results in storing ~0.01% of the atomic-scale emitters

" 1 um? element has 10*-10° atomic-scale emitters — store <1000 emittets.

= PIC field emission algorithm each At:

* Compute E_ . on each surface element face

= Loop over all ~100 atomic-scale emitters:
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Meso-scale Field Emission Simulations

" Meso-scale model does show stochastic variation in the e- density just above the surface
based on the random seed

= Goal is to be able to sample many possible surfaces (e.g. different $’s and ¢’) and 100421
compute breakdown probabilities for as-built surfaces

Meso-scale (Ax=100nm) surface
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Meso-scale Field Emission Simulations

= Contours of electron density just above the cathode show very different spatial variation
between the meshed STM surface and the flat, meso-scale surfaces

" The STM surface was sputtered deposited Pt — large, ~micron-scale features are apparent

1.0e+21

= The current model picks atomic-scale emitter properties (8’ and ¢’s) independently for every
“meso-scale” surface elements. Clearly not independent for sputtered deposited Pt
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Meso-scale Field Emission Simulations

= Compare computed global current versus applied

- 1.E+03 A

field for the resolved STM surface and meso-scale g—
model surface 'féi 1.E+00 -

= Stochastic variation in the meso-scale currents small %a 1.E-03 - e STM surface
* The meso-scale model currents have the same § 1.E-06 A —=—Meso-scale model

~ : ——[3 eff=2.18

trend as the STM surface, but ~12Xig 1 E-09 | BT . |

= Difference partially (mostly?) from variation in fields due 0 1 2 3 4 5

to changes in gap distance for the STM surface Applied Field (GV/m)
= Flat anode placed 10.4pum from the mean STM cathode height
AN
Mean height




Initial Local STM Breakdown Results

" Took local field emission 1-V 1000 s
curves with tip radius < 100nm < 100 "n.,,.... I
at a distance of ~200nm e 10 "o,

g 1 'l. . i
= Relatively feature-less surface S o1 \\\ |
with small-$3 within the region of 0.01 LA
the tip field footprint -1000 -800 -600 -400 -200 O

Voltage (V)

= Breakdown at ~4 GV/m!

= This seems to be evidence that, at least for relatively smooth sputter
deposited Pt, we do not have small-$ atomic-scale features that grow into
large-f features which then allow breakdown to occur at ~10 MV /m.

* Perhaps there is a special feature somewhetre on a ~1 cm? electrode that i I
results in (or can grow to) a large enough  to get breakdown at ~10 :
MV /m that was not present on our ~10° cm? sampled area. Az<0.1 um over 10um




Conclusions

* Investigating surfaces at the atomic scale to characterize features
relevant to vacuum field emission.

* Want to clarify B-based field emission so [ really is only geometry
induced field enhancement.

* By examining field emission at the nanoscale, we have
attempted to create a meso-scale physics-based model suitable ) s
for predictive (and stochastic) PIC simulation of emission ~

» Still have a long way to go — any ideas/suggestions??

* Characterized region, then performed local discharge in STM
(spatially constrained surface participation) — Breakdown

occurred at ~4 GV /m!

* Region was flat and uninteresting — the breakdown field 1s consistent
with breakdown from region with a small 3

http://cint.lanl.gov



