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4 Motivation: Driving QKD Applications through Miniaturization

Size, Weight and Power + Cost for Secure Communication

Defense Security

Smart Grid
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Solar panel

Many mobile and multi-purpose applications require miniaturization
Widespread adoption, acceptance

Safety



5 I Context: SECANT QKD Program
Alice

Bob

Miniaturization

Implementation of chipscale
devices in working links

Bridge SiP technology to
application space

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan,

R. H. Hadfield, J. L. O'Brien, and M. G. Thompson, "Chip-based Quantum Key Distribution," ArXiv e-prints, Sept. 2015.

C. Ma, W. D. Sacher, Z. Tang, J. C. Mikkelsen, Y. Yang, F. Xu, H.-K. Lo, and J. K. S. Poon. "Integrated silicon photonic transmitter for

polarization-encoded quantum key distribution," ArXiv e-prints, June 2016.



6 Sandia's Fab Capabilities for Si Photonics and III-V Platforms
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• Silicoi
• Silicon actives (modulators, switches, tuning devices)
• Vertical junctions for efficient devices
• Passive waveguides
• Grating and edge coupling
• Polarization beam splitters
• SiN to Si transitions and crossings
• Directional, Adiabatic couplers
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Lock and Key

•Ring filters
•Mode filters
•Mach-Zehnder modulators

•Thermal, EO, traveling wave
•Micro-disk modulators
•Disk modulator and ring filter silicon thermal tuning elements
•Germanium detectors



7 Enabling On-Chip Discrete-Variable QKD

Standard BB84 DV-QKD setup
with polarization encoding rfriggers

Free-space, bulk encoder components
• Amplitude and phase modulators
• Polarization controllers
• Beam splitters and combiners
• Spatial mode controllers
• Channel

Computer = Counter z 
Breakout

Box

On-chip encoder components 
• Mach-Zehnder modulators
• Polarization beam splitters
• Couplers
• Grating and edge couplers
• Waveguides
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8 I DV Encoder/Decoder Chip: Layout and Components
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9 DV Chip Characterization Setup

Device Characterization
• Losses
• Stokes Parameters
• Modulation rates

Mounted chip for Alice Probe station Mounted chip for Bob



DV Transmitter: Polarization Control and Accessible States
Measurements on Polarimeter
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11 I DV Receiver Mapping for Basis and Polarization Control
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12 DV Chip Modulation Characteristics
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13 DV Chip-to-Chip Assembly and Testing
Computer

Breakout

Box

DV Tx Chip

Key pieces:
Alice side 
1. Pulse generation
2. Modulator Calibration

a. EO AM, PM
b. Wavelength dependence
c. LUT development

Bob side 
1 . Modulator Calibration

a. E0 Analyzer
b. Wavelength dep.

2. Losses: -20 dB

• Polarizations established with Stokes parameters
of 0.99 for BB84

• Polarization extinction ratio at Bob —20 dB at 1585 nm

Breakout

Box

DV Rx Chip

Computer

Integration for QKD 
1. DAQ/Timing/Synchronization

a. AM/PM control
b. Detection timing
c. Processing

Challenges:
• Losses
• Polarization reference frame

setting over link
• Acquisition and synchronization

at DAQ speeds
• QBER



14 DV Chip-to-chip Development on Tabletop Testbed
Alice

Stokes parameters

S, — 0.999 for the

four states

0.08

CC
0.06

LIJ
co 0.04

0.02

0

Master

Clock

Chip

Packet #3... Packet #2 Packet #1

Clock rate: Potential for Multi-GHz with onboard EOMs

Mean photon number at launch: !..t = 0.1 to 0.5

Mismatched Bit
7

6

4

:

2

1

0
14262 14270 14275 14280 14285 14290 14295 14300 14305 14310 14315 1432014324

Time Bin

BOB I

ALICE

BER vs. Added Loss

•

•

0.5 1 1.5 2 2.5

Loss (dB)

•

6 t

5

4

= 3 -

2

1

0 -, ... •••.1 . ....1 . •—•1 ....1 . .1. .1 ....1
14164 14170 

•
14175 14180 14185 14190 14195 14200 14205 14210 14215  14Z20 '14226

Time Biri

Matched Bits

Bob

Extinction Ratio for
H/V and +45/-45: 20 dB

DAQ

Data

Handling

B GB ER1
A LIC E EffM1

1 1 1 11 I I

Clock rate: 100 kHz

Raw key rate: —300 bps

QBER: as low as 1%

Multi-detection rate: —10-6

ER within basis > 27 dB

Detector

Efficiency: 10%

Polarization-dependent fiber-to-

fiber loss at Bob:

TE: 16.2 dB

TM: 14.7 dB

+45: 16.2 dB

-45: 15.3 dB



15 I Analysis for Key Rate

Individual attack, Asymptotic case
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16 Key Rate with Decoy State Protocol
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17 Improvements and Pathforward

• Reduce loss
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• Include nitride taper for edge coupling
• Minimize number and lengths of carrier-depletion modulators

• Implement decoy state protocol

• Increase detection efficiency: SNSPD

• Implement SPS

• High efficiencies approaching 100% with
proper mode matching.

• TE and TM can both couple efficiently
• Can couple with Ultra-High NA fiber
• Measurements show less than 0.5 dB loss at

facet



18 Metro-Scale Testbed
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19 DV Transmitter with Top-down Polarization Grating Coupler
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20 DV Transmitter Characterization
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21 I Achieved Key Rates with On-Chip Transmitter

Asymmetric BB84 QKD protocol
with decoy states

157 kbps over 43 km fiber

685 kbps at 10 dB loss
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22 Conclusions

• SiP on-Chip QKD transmitter and receiver designed and characterized

• Tests on chip-to-chip implementation show that receiver losses need to be managed

• Chip-to-chip implementation can be realized with overall efficiency improvement
• Loss reduction
• Use of decoy state protocol
• Use of SNSPD
• Use of SPS

• Metro-link with on-chip transmitter successfully implemented.
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Chip-scale single
photon sources

Chip-based Single
photon module

YEAR 1

• Electrically pumped, g(2) < 0.1, 2

MHz

YEAR 2

• +/- 100 nm placement accuracy

• 30% quantum efficiency

• Q > 103

Components of Grand Challenge
Table-top Continuous

Variable Sources
(Squeezed state source)

YEAR 1

• Design of CQF network and

controller

YEAR 2

• CQF controller with 8-10 dB of

squeezing

YEAR 3

Chip-scale single
photon detectors

W contact
Si3N4 Wavegui4+ Gec

Ge W via
P- si

YEAR 1

• Single 1 GHz APD

YEAR 2

• Multi (8/16) branch quantum

tomography

• Number resolving detection

•
YEAR 3 • 3X distance improvement of CV-

• 50% collection efficiency
QKD

•
• 1 GHz photon rate

• Design integrated photonics CQF

controller

AII components upgrading modular
quantum transmission link throughout
the program

YEAR 3

Temporally multiplexed single

photon detection (Q < 0)

Homodyne single photon

detection

Parking lot range (21,

Functional quantum

transceivers

YEAR 1

• Design custom lnP diodes

• Design interlock to Si photonics

platform

YEAR 2

• Bond lnP laser to Si substrate with

< 20dB insertion loss

• Photon generation and detection

on single chip

YEAR 3

• Security proof for repeater

architecture

• XOR operations using two

repeater nodes

Sandia
National
Laboratories


