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4 I Motivation: Driving QKD Applications through Miniaturization

Size, Weight and Power + Cost for Secure Communication

Defense Security

Smart Grid

Many mobile and multi-purpose applications require miniaturization
Widespread adoption, acceptance

«
|
|
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Miniaturization

Implementation of chipscale
devices in working links
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¢ I Sandia’s Fab Capabilities for Si Photonics and IlI-V Platforms
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» Silicon actives (modulators, switches, tuning devices) *Ring filters

« Vertical junctions for efficient devices *Mode filters

» Passive waveguides *Mach-Zehnder modulators

« Grating and edge coupling *Thermal, EO, traveling wave

* Polarization beam splitters *Micro-disk modulators

« SiN to Si transitions and crossings *Disk modulator and ring filter silicon thermal tuning elements

» Directional, Adiabatic couplers *Germanium detectors




7 I Enabling On-Chip Discrete-Variable QKD

Breakout =
Box

Standard BB84 DV-QKD setup
with polarization encoding

Computer

Triggers
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Computer == Counter Z e I

Free-space, bulk encoder components On-chip encoder components
» Amplitude and phase modulators * Mach-Zehnder modulators

» Polarization controllers » Polarization beam splitters
« Beam splitters and combiners <:> « Couplers

» Spatial mode controllers » Grating and edge couplers

e Channel «  Waveguides




8 | DV Encoder/Decoder Chip: Layout and Components
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9 I DV Chip Characterization Setup

Device Characterization
 Losses

« Stokes Parameters
 Modulation rates

Mounted chip for Alice Probe station Mounted chip for Bob



| DV Transmitter: Polarization Control and Accessible States

Stokes parameter value
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| DV Receiver Mapping for Basis and Polarization Control
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12 I DV Chip Modulation Characteristics




13 | DV Chip-to-Chip Assembly and Testing

Computer

Computer

DV Tx Chip DV Rx Chip
Key pieces:
Alice side Bob side Integration for QKD
1. Pulse generation 1. Modulator Calibration 1. DAQ/Timing/Synchronization
2. Modulator Calibration a. EO Analyzer a. AM/PM control
a. EO AM, PM b. Wavelength dep. b. Detection timing
b. Wavelength dependence 2. Losses: ~20 dB c. Processing

c. LUT development

Challenges:
* Losses
* Polarizations established with Stokes parameters * Polarization reference frame
of 0.99 for BB84 setting over link
* Polarization extinction ratio at Bob ~20 dB at 1585 nm * Acquisition and synchronization
at DAQ speeds

* QBER



14 | DV Chip-to-chip Development on Tabletop Testbed
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15 | Analysis for Key Rate

Individual attack, Asymptotic case
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SPAD Quantum Efficiency

Dark Count Rate

Key Rate with Decoy State Protocol
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17 | Improvements and Pathforward

e Reduce loss

» High efficiencies approaching 100% with
proper mode matching.

« TE and TM can both couple efficiently

« Can couple with Ultra-High NA fiber

 Measurements show less than 0.5 dB loss at
facet
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Simulated coupling efficiency
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Wavelength (um)

 Include nitride taper for edge coupling
* Minimize number and lengths of carrier-depletion modulators

« Implement decoy state protocol
* Increase detection efficiency: SNSPD

* Implement SPS




Metro-Scale Testbed
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DV Transmitter with Top-down Polarization Grating Coupler
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MNormalized transmission (dB) —

20 | DV Transmitter Characterization
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21 | Achieved Key Rates with On-Chip Transmitter

Asymmetric BB84 QKD protocol
with decoy states

157 kbps over 43 km fiber

685 kbps at 10 dB loss
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22 | Conclusions

« SiP on-Chip QKD transmitter and receiver designed and characterized
» Tests on chip-to-chip implementation show that receiver losses need to be managed

» Chip-to-chip implementation can be realized with overall efficiency improvement
» Loss reduction
» Use of decoy state protocol
» Use of SNSPD
» Use of SPS

* Metro-link with on-chip transmitter successfully implemented.






Components of Grand Challenge k=

Table-top Continuous
Variable Sources
(Squeezed state source)

Chip-scale single
photon sources

Chip-scale single Functional quantum
photon detectors transceivers
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g AT — YEAR1
A S / * Design custom InP diodes
YEAR 1 * Design interlock to Si photonics
YEARL YEAR1 * Single 1 GHz APD platform
* Electrically pumped, g(2) < 0.1, 2 * Design of CQF network and VEAR 2 YEAR 2
MHz controller _ + Bond InP laser to Si substrate with
YEAR 2 YEAR 2 * Multi(8/16) branch quantum < 20dB insertion loss
* +/-100 nm placement accuracy s COF eontrollarwith 8:10dB of ) tomobgraphy Nined _ * Photon generation and detection
*  30% quantum efficiency squeezing Number resolving detection on single chip
e YEAR
YEAR 3 3 YEAR 3
YEAR 3 + 3Xdistance improvement of CV- * Temporally mgltiplexed single *  Security proof for repeater
QKD photon detection (Q < 0) architecture

*  50% collection efficiency

* Homodyne single photon .
* 1 GHz photon rate

* Design integrated photonics CQF -
detection

controller

XOR operations using two
repeater nodes

All components upgrading modular e b e
quantum transmission link throughout T T I

the program




