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2 I Outline

What is EMPIRE
Research in Algorithms and Computer Science

Simulations of diodes driven by photoelectric effect on Z and NIF
- Vacuum

Gas filled

Surface Heating



3 1 EMPIRE's Grand Vision: Plasma Physics Modeling

EMPHASIS is our current production low density plasma simulation tool

EMPIRE adds new capabilities:

• Written for advanced computing architectures
• GPGPU, Intel Phi, ARM...

• Expanded particle-based modeling regime
• DSMC (changing background)/MCC

• Implicit PIC in term of plasma density and magnetic field

• Full continuum fluid plasma modeling for high-density plasmas
• Drift-Diffusion approximation

• Local Mean Energy Approximation (LMEA)

• Local Field Approximation (LFA)

• Hybrid particle-fluid modeling for intermediate densities

Code

EMPHASIS

EMPIRE

,

Plasma Representation

Klimontovich Equation

4
Boltzmann Equation

4
n-Fluid Continuum Plasma

Magnetohyd rodynamics



4 I EMPIRE's Grand Vision: Integrated Suite of Capabilities

EMPIRE is being designed to be our "next-generation" "low density" plasma modeling tool

EMPIRE builds off various components to achieve performance portable physics representation

. EMPIRE-EM: Core time-domain Maxwell's equations for electromagnetics

o EMPIRE-PIC: Particle-in-Cell plasma modeling

o EMPIRE-Fluid: Multi-species fluid plasma modeling

. EMPIRE-Hybrid: Coupled Fluid/PIC plasma modeling

EMPIRE is built upon Trilinos components:

. Panzer: FEM discretization tools

. Tempus: General time integration package

. Uses the modern Tpetra-based linear solver stack

. Kokkos: Portable threading library

The
EMPIRE
Suite

EMPIRE-
Hybrid

EMPIRE-
PIC

Collisions
DSMC/MCC

EMPIRE-
Fluid

EMPIRE-EM

Trilinos/Panzer



5 Performance Portability Through Kokkos

11 Applications
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6 I Basic Equations

Maxwell's Dynamical Equations:

a al
V x E = 

B 
VxH =J+

at at
Subject to the initial value
constrai nts:

V • B = 0

V • D = p

With the definitions for
macroscopic media:

D = EE
J = GE

B = pH

Relativistic Lorentz Force Law for relativistic velocity u=vy.

du q [E+.431
L 7 -Idt m



7 I The Plasma Models

Relativistic Klimontovich Equation

ONs(x, u, t) qs 
v

ONs(x, u, t)
  + v • VxN, + (E x B • VuN,s =  ot nts ot

p(x , t) =

spe Ci Cs

Maxwell's Equations

s duNs(x,u,t)

V • D(x,t)= 
p(x,t)

V • B(x,t) =0

V xE(x,t)=
at

€o

OB(x,t)

V x H(x, t) = ii0J(x,t)+ PoEo
OD(x,t)
 at 

J(x,t)=
species

c

IduuNs(x,u,t)



8 I The Radiation Transport Models

Relativistic Klimontovich Equation

aNs(x,u,t) 
Is v

aNs(x,u,t)
  + v • VxN, + (E+ x B • VuN8 =  

Ot nts c at

Fixed E and B, often zero

c

This contains the
uncertainty in the model



9 I Fluid formulation for plasma modeling

A multi-species 5-moment model derived by taking moments of the collisional Boltzmann equation
over velocity space:

a pc,

at 
+ V • (paua

0(palla) + V • (palla Ua lla)
at Mcc

rnaUsrcrisrc

srcs

OE,

at 
+ V ((E„ + p„)u„ u„ II„

" 
— 

"
p E • Uct

1
± 
2

srcs

marsrc

srcs sinks

= 
qa 

p„ (E u„ x B)

sinks

maFsink

mauarsink E Ra'13

0/a

(11aRa'i3 Qa'13)

/(3 a

ma,qrcFsrc

2
sinks

1 2 risink
TrLaUcEt

Much faster than PIC for simulating high-density collisional plasma environments



10 _ EMPIRE Simulations of Diodes Driven by the Photoelectric Effect

Comparison of EMPIRE Simulations with Diodes Driven by the Photoelectric Effect:

Benchmark capability and identify missing physics in EMPIRE

O Advance capability in particle emission and collision models

Motivation:

Drive development of necessary physics
(sources, collisions, heating)

Drive development of software capability
(solvers, load balancing, particle merge algorithms)

o Use simple verification and validation problems to build
confidence in physics capability

O Build understanding in simulation uncertainties

O Build understanding in experimental measurement uncertainties

Outside NIF Target Chamber
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1
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12 I EMPIRE Simulations of Diodes Driven by the Photoelectric Effect

Comparison of EMPIRE Simulations with Diodes Driven by the Photoelectric Effect:

Benchmark capability and identify missing physics in EMPIRE

O Advance capability in particle emission and collision models

Motivation:

Drive development of necessary physics
(sources, collisions, heating)

Drive development of software capability
(solvers, load balancing, particle merge algorithms)

o Use simple verification and validation problems to build
confidence in physics capability

O Build understanding in simulation uncertainties

O Build understanding in experimental measurement uncertainties

Four cavity experiments on a diagnostic instrument manipulator

1
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13 . EMPIRE Simulations of Diodes Driven by the Photoelectric Effect

Comparison of EMPIRE Simulations with Diodes Driven by the Photoelectric Effect:

Benchmark capability and identify missing physics in EMPIRE

Advance capability in particle emission and collision models

Motivation:

o Drive development of necessary physics
(sources, collisions, heating)

Drive development of software capability
(solvers, load balancing, particle merge algorithms)

o Use simple verification and validation problems to build
confidence in physics capability

• Build understanding in simulation uncertainties

• Build understanding in experimental measurement uncertainties

S304

il with Aluminum showing

d g phi n other side

Cut-a-way of Cavity



14 I Parameterized B-Dot Cavity

x-ray collimator
Al
window

variable cavity gap

‘ variable emission surfaceld
Au/ Ni / Mo /Ag

/,

central puck electrode

B-dot current sensor:

+ effective area

Problem Parameters:

Cavity height (mm)

Wedge angle (degrees)

Base mesh scale (mm)

Time step (s)

Simulation time (s)

Number of processors

Background neutral
pressure

Parameterized injection
boundary for:
, Thermal emission energy

. ITS source

. SCL

. Neutral particle emission

Prototype Milestone Mesh

B-Dot Nightly Testing: Includes a vacuum B-Dot
with two vastly different currents. An argon-filled
pressurized B-Dot with e-Ar collisions is under review.



15 Summary of Vacuum, Gas, and SCL emission
1000
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V a Uum
20 mTorr Ar

15 20

• Adding a background gas neutralizes
the space charge barrier

• Adding space charge limited
emission increases the tail and
smooths the tail
• Early time response is mostly

ionization (collisions)
• Late time with SCL is the SCL

boundary and the inductance of
the system and scattering
collisions (not ionization)

• With out SCL ionizations
continue through late time

• These effects have been explore in
EMPHASIS

1

Time (ns)



16 Vacuum B-dot: Electric Field in Z
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Time:0
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DB: BDot.h5part
17 Cycle: 3 Time:6.00415e-10 Vacuum B-dot: Phase Space
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18 Introduction to I mm B-Dot

Below the space change limit
• Testing photo electron emission
• Limited out gassing from surfaces

As Meshed
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Input into Vacuum B-Dot Simulation
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20
Current from Experimental
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Good Experimental Comparison For Low FluenceVacuum B-Dot
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22 N Error Bound on Z Shot 2503: 95% Confidence Interval

Assume 4 current sensors are independent
measurements

' Use Student's t-distribution to estimate the bounds

0 Yield is 60kJ+/-12kJ (2 sigma)

Over estimation of the error because the
environment might not be the same

Simulation error is the confidence interval
assuming first order in dx, dt (CFL=6), and
number or particles

0 dx=—height/8, —height/16, and —height/32
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Late time current is larger in experiment could be because of outgassing



1 Introduction to I Omm Argon B-Dots
24

Goal of these experiment was to provide
data with a simpler gas than N2

o Selecting the correct Ar set of reactions
and cross-section is ongoing

O Scaling/extrapolation to higher energy

Open issues

O Differential cross-section/Energy
Partitioning

o Two-step ionization

O Multiply ionized ions

O Initial ionization

O Particle merge



Argon Cross Section
25
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Ratio of lonization Argon Cross Section
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10mTorr Argon I Omm B-Dots
27

Well over the space charge limit
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50mTorr Argon I Omm B-Dots
28

Both the Haysahi and BSR (B-spline R-
matrix with pseudostates) give results
lower than experiment
. Differential Cross Section
. Energy Partitioning, questionable at this

energy ranges
. Two-step ionization

o Electronic excitation

Numerical uncertainty has not been
assessed

Uncertainty from yield is shown, but not t,
gas pressure Z

c..)
Shape of the peak in simulations is
shifted

Second peak is not seen in simulations
o Could be the PCD doesn't have enough

resolution
o Could be increase gas pressure due to
outga s sing
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29 I. 
I 00mTorr Argon I Om m B-Dots

Both the Haysahi and BSR (B-spline R-
matrix with pseudostates) give results
lower than experiment

Numerical uncertainty has not been
assessed

ai
Uncertainty from yield is shown, but 5
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'a'
Shape of the current with the Hayashi i.i
cross-section looks closer to z
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resolution

0 Could be increase gas pressure due to
outgassing
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30 i 
200mTorr Argon I Omm B-Dots

Both the Haysahi and BSR (B-spline R-
matrix with pseudostates) give results
lower than experlment

Numerical uncertainty has not been
assessed
o Numerical heating is large at late time

t
Uncertainty from yield is shown, but st
not gas pressure, etc.

1-4'cl.,)
Shape of the current with the Hayashi ti

:
c..)cross-section looks closer to

experiment

Second peak is not seen in simulations
O Could be the PCD doesn't have enough
resolution

O Could be increase gas pressure due to
outgas sing

70M Ar particles
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31 
6 300mTorr Argon I Omm B-Dots

Both the Haysahi and BSR (B-spline R-
matrix with pseudostates) give results
lower than experiment
. At 300mTorr the difference between BSR

and Hayashi is less

Numerical uncertainty has not been
assessed
. Numerical heating is large at late time
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resolution

. Could be increase gas pressure due to
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70M Ar particles
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DB: Mesh_BDotexo. 1 1 52.Cri'00
33 Time:0 B-Dot with 20mTorr: Electron Density
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DB: Mesh_BDotexo. 1152.0000
Time:0
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Pseudacolar B-Dot with 20mTorr:Ar+ Density Movie
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DB: Mesh_BDotexo.288.000
Time:0
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DB: Mesh_BDotexo.288.000
Time:0
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Pseudocolor B-Dot with 20mTorr and SCL: Electron Density
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DB: Mesh_BDotexo.288.000
Time:0
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Pseudocolor B-Dot with 20mTorr and SCL: SCL Electron Density
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DB: Mesh_BDotexo.288.000
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39 Focusing on the Uncertainty of the Surface Emission
lOmm Au BDot 300mT N2 Res3
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10 mm, N2 filled, B-Dot, fluence scan
• N2 Collisions control the current ramp: good collision set
• Surface plasma models control the shape of the tail: not

predictive, but captures the phenomenon
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40 I Conclusions

There is a lot of physics that need to come together to
simulate radiation driven cavities
Electromagnetics: Finite Element

Chemistry/Collisions: DSMC

Plasma Facing Surface: Heating and desorption/emission (See Nick
Roberds Poster for more details)


