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Motivation for transition kinetics

e Depends on materials and nature of transitions
e Materials microstructure
* Orientation

* Improved understanding of the interplay between
time and length scale in phase transitions.

* Our aim is to improve the fundamental
understanding of phase transition kinetics with a

model system

C. W. Greeff, D. R. Trinkle and R. C. Albers, SCCM (2002)
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Broad project goals

1. Careful control of loading and ramp profile:
Thor pulsed power driver at Sandia.

2. Diagnostics for phase transition identification: Implement a
platform-independent X-ray diffraction (XRD) diagnostic
capable of analysis in a variety of materials, VISAR and PDV.

3. Careful control of length scale: Introduce a “synthetic material
target” which allows for the careful control of length scale to study £
the combined effect of rate and scale on transition kinetics



Control of rate: Thor driver, new diagnostic @Sa"-d
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Thor is a pulsed-power accelerator similar to Z, which can drive ramp waves to

pressures of approximately 25 GPa in its current 64 brick configuration.

Thor can be configured like Z but with lower peak pressure, but better pulse shaping
Careful control of ramp profile

» Adding X-ray diffraction diagnostic to existing velocimetry (VISAR & PDV)

» NSTec Supersaver (x-
ray diode) to generate

Specifications:
« 17.48 keV from Mo-K-a
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Control of length scale: “synthetic microstructures” Notiowal
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Bulk Nano spheres
We can create a “synthetic microstructure” by leveraging the synthesis
wr JJL o Fh and assembly processes to create well-characterized films.
T } These nanoparticle films mimic some aspects of grain structure
orceel "R by microstructure, but with better (monodisperse) size control.
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Tolbert, Alivisatos, Science, 265, 373 (1994)

Wu et al., JACS, 132, 12826 (2010)
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Dynamic compression has been validated with
similar arrays of particles (gold), pressures up to
R 12 GPa were achieved with reasonable pressure
Nl ramp profiles. We can do even more on Thor.
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Phase transition kinetics in CdS

Pressure-induced Cadmium Sulfide (CdS) phase transition from Wurtzite to Rocksalt at ~2-3 GPa
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Knudson, Gupta, J. Appl. Phys. 91, 9561 (2002)
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At higher pressures transitions are effectively immediate, but at
lower pressures there is an “incubation” time for the transition which

Instantaneous Stress (kbar)




Modeling motivation and methodology o
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e Stable Wurzite and Rocksalt
Potential predicts both phases and
the dynamic transition

Interatomic Potential for CdS (Rabani et al., 2012)

LJ-type with long-range electrostatics, fit to elastic constants

a N\ 12 -\ 6 Hugoniostat methodology to allow
LT N A nostat metn

YT T\ F; rij long-time simulations of shocked
states (Ravelo et al., 2004)
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Orientation-dependent mechanisms c-axis ()

Solid-solid pressure-induced phase transitions have been studied in bulk
geometries and for military (Martensitic) transformations in dS.
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c-axis:
e alternating plane shift along y when
compressed along z.
* no observed rate dependence
* final state rocksalt rotated 45 in x-y plane
Displacement vectors show non-affine displacement

Knudson, DCS exps.
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Three
orientations
Identified
and
confirmed
with
experiment.
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Orientation-dependent mechanism c-axis

Low-pressure regime — thermal activation
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Orientation-dependent mechanisms a-axis ()
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Solid-solid pressure-induced phase transitions have been studied in bulk geometries
and for military (Martensitic) transformations in CdS.

a-axis compression: "
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e Diagonal alternating shifts of individual atoms
when compressed along x.

* |ower rates lead to lower transition pressure

* final state rocksalt rotated 9 degrees in x-z plane

Knudson, DCS exps.

Displacement vectors show non-affine displacement
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_M'Q'c:!'e_lmg length scale effects e
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Orientation pressure thresholds are reduced

for cut nanoparticle which bodes well for

randomly oriented films.




Conclusions and direction et
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* We are conducting a combined experimental and modeling effort to
explore the interplay between length and time scales in phase transitions
within a carefully controlled model system

* We've identified transition mechanisms and orientations resulting from
c-axis and a-axis compression in CdS

* Modeling results indicate different trends for homogeneous and surface
nucleation as a function of length scale

* Future: Integration of experimental results and modeling
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XRD diagnostic hardware implementation e
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Future Thor XRD pulser in 961 high

» NSTec Supersaver (x-ray diode) to generate line emission from molybdenum metal anodes.
» Radiation testing/certification delayed operations in 961 high bay — completed last week.

» Calibration tests on similar X-ray pulser at MSTS for bulk Au and Silicon and Au and CdS
nanoparticles films

CdS (0001) single-crystal Laue spots
' 60°

OO

Gold nanoparticle films on Si

15°
Specifications:
« 17.48 keV from Mo-K-a

e 20— 30 ns duration flash

« Expect 108 to 10° photons incident
on the diffraction sample

Morgan (MSTS)

30° 90°

-‘#ﬁ 1200 (aaz) AU L | nBS

* Good penetration of 20-50 um,
allows high-Z targets 45°

Ao (1646)

* Image plate for most shots, could
be replaced with CCD
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Modeling of bulk phase transition in MD ot
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Molecular dynamics studies in dynamic compression of coated particles have

been completed. “Synthetic microstructure” showed plastic response in gold.
Li, Bian, Lane, Salerno, Grest, Ao, Hickman, Wise and Fan, Nature Comm., 8, 14778 (2017)

Solid-solid pressure-induced phase transitions have been studied at Sandia in
bulk geometries and for military (Martensitic) transformations in CdS.
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