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Personalized Search at 
Sandia National Laboratories

C L AY T O N  P R Y O R

A B S T R A C T

In the scope of enterprise search, the assumed preference 

of each user is the number of times that they have 

previously clicked on pages, an observed weight. This 

weight is then used to co-cluster (associate) with other 

users to make predictions about what pages they will be 

most likely to find useful based on their previous click 

history.

This presentation will describe how we configured 

personalized search in days, not weeks, months, or even 

years. We will review the configuration process from data 

gathering and model building to the query configuration 

used to return personalized results to enterprise search 

customers.  We will share results and interesting 

observations as well.
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What is Personalization?



What is Personalized Search?
Personalized search refers to search experiences that are tailored specifically to an 
individual's interests by incorporating information about the individual beyond the 
specific query provided.

Factors that could be used to influence personalized search include:
• Query History

• Click History

• Location

• Social Media

• HR Data (if  acceptable)

• Organizational Data



Why does it matter in an 
Enterprise Search environment?

Google does it – personally, I don’t like this answer  ☺

We can provide you with results that are more useful to you than the standard results

We can predict what you might be interested in without you even asking

Perhaps we can improve your safety and security



How we accomplished data-driven 
personalization natively within Fusion

1. Capture Signals

2. Aggregate Signals

3. Create a user-weighted documents collection

4. Train ALS Recommender Model

5. Generate “Items for Users” Recommendations

6. Incorporate Recommendations into Query Pipeline to 

Influence Results



Configurations of a sample

personalized search pipeline 

within Fusion



Create a user-weighted documents collection
Job: Signals Aggregation



Train ALS Recommender Model
Job: ALS Recommender



Generate “Items for Users” 
using the resulting collection 
from ALS model

Query Pipeline Stage: 
Recommend Items for User



Examples



Results - Example – “Anonymous” v. Frequent Conference Goer



Results - Example – Regular Employee v. Manager



Observations
◦ It worked!  The results change when personalization is enabled.

◦ This personalization is not based solely on the current user’s click history but what other 
individuals with similar interests clicked on

◦ This approach produces “inferences” of  what the current individual might be interested in

◦ Similar types of  users had similar recommendations

◦ Frequent Conference Goers

◦ Managers

◦ Level of  personalized results is configurable

◦ A user with no click history is given standard search (no personalization).



Considerations
◦ The model generates a query-agnostic list of  recommended documents and scores.

◦ Only documents that pass the query parsing stage will receive a boost, implying that irrelevant 
documents to the query will be filtered out, and thus not boosted.

◦ However, pages will be boosted whenever they pass the query parser.

◦ i.e. if  https://www.example.com/ appeared in the queries “foo” and “bar”, it will be boosted in both.



Next Steps

◦ We have a policy not to introduce changes into our search application until we evaluate them

◦ Changes must not hurt the search results and, hopefully, they should improve the search results

◦ Compare to Golden Standard - We have a tool that will evaluate changes in search results based 
on how well they match what experts list as the most desirable results for selected queries.

◦ Golden Standard does not work when results change depending on who is currently using the 
system!

◦ Must consider alternatives such as

◦ Focus Groups

◦ A/B Experiments
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Previous Approach
Previously, Clay had demonstrated personalization by using 
custom solr sub-queries to lookup and do collaborative filtering 
on-the-fly from within the query pipeline.

In this approach, there are three mechanisms occurring:

• 𝑓 ∶ 𝑢𝑠𝑒𝑟 → {𝑝𝑎𝑔𝑒0, … , 𝑝𝑎𝑔𝑒𝑛}

– Gather user click history, a set of n pages

• 𝑔 ∶ {𝑝𝑎𝑔𝑒0, … , 𝑝𝑎𝑔𝑒𝑛} → { 𝑝𝑎𝑔𝑒0, 𝑠𝑐𝑜𝑟𝑒0 , … , 𝑝𝑎𝑔𝑒𝑚, 𝑠𝑐𝑜𝑟𝑒𝑚 }

– Find related documents based on collaborative-filtering-like solr query. 

• ℎ ∶ 𝑞𝑢𝑒𝑟𝑦, 𝑝𝑎𝑔𝑒0, 𝑠𝑐𝑜𝑟𝑒0 , … , 𝑝𝑎𝑔𝑒𝑚, 𝑠𝑐𝑜𝑟𝑒𝑚 →
(𝑝𝑎𝑔𝑒0, … , 𝑝𝑎𝑔𝑒𝑛)

– Query the index with additional boosts from the related documents.



Approach

Fusion provides an ALS (alternating least squares) collaborative filtering job that 

trains a model to recommend pages for users.

By pretraining this model, it essentially accomplishes the functionality of both f and 

g from the previous approach, while also eliminating the runtime computation.

It also simplifies the mechanism.

• 𝑎 ∶ 𝑢𝑠𝑒𝑟 → { 𝑝𝑎𝑔𝑒0, 𝑠𝑐𝑜𝑟𝑒0 , … , 𝑝𝑎𝑔𝑒𝑚, 𝑠𝑐𝑜𝑟𝑒𝑚 }

– Evaluate the model with the user to get a list of recommended pages and scores

– This is essentially a composition of f and g from the previous approach

• b ∶ 𝑞𝑢𝑒𝑟𝑦, 𝑝𝑎𝑔𝑒0, 𝑠𝑐𝑜𝑟𝑒0 , … , 𝑝𝑎𝑔𝑒𝑚 , 𝑠𝑐𝑜𝑟𝑒𝑚 → (𝑝𝑎𝑔𝑒0, … , 𝑝𝑎𝑔𝑒𝑛)

– Query the index with additional boosts from the recommended pages.




