

Configuring Recommendations for Personalized Search at Sandia National Laboratories

PRESENTED BY

Clay Pryor and Ryan Cooper

SAND2019-10363 C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Powered by Lucidworks

ACTIVATE

THE SEARCH AND AI CONFERENCE

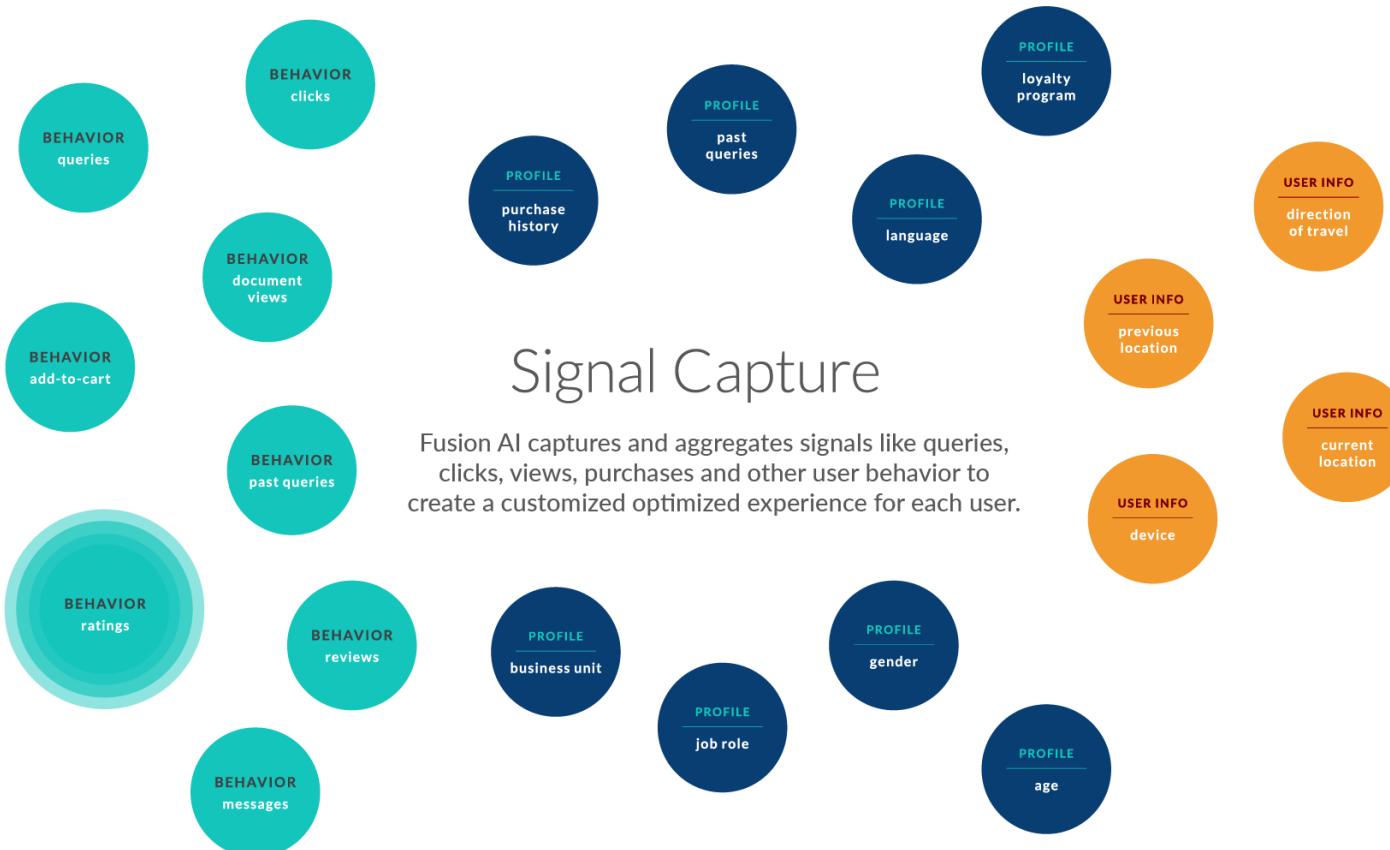
Personalized Search at Sandia National Laboratories

CLAYTON PRYOR

RYAN COOPER

ABSTRACT

In the scope of enterprise search, the assumed preference of each user is the number of times that they have previously clicked on pages, an observed weight. This weight is then used to co-cluster (associate) with other users to make predictions about what pages they will be most likely to find useful based on their previous click history.


This presentation will describe how we configured personalized search in days, not weeks, months, or even years. We will review the configuration process from data gathering and model building to the query configuration used to return personalized results to enterprise search customers. We will share results and interesting observations as well.

Agenda

- What is Personalization?
- What is Personalized Search?
- Why does it matter in an Enterprise Search environment?
- How we accomplished data-driven personalization natively within Fusion
- Fusion configurations
- Examples
- Observations and Considerations
- Next steps

What is Personalization?

SIGNAL CAPTURE

What is Personalized Search?

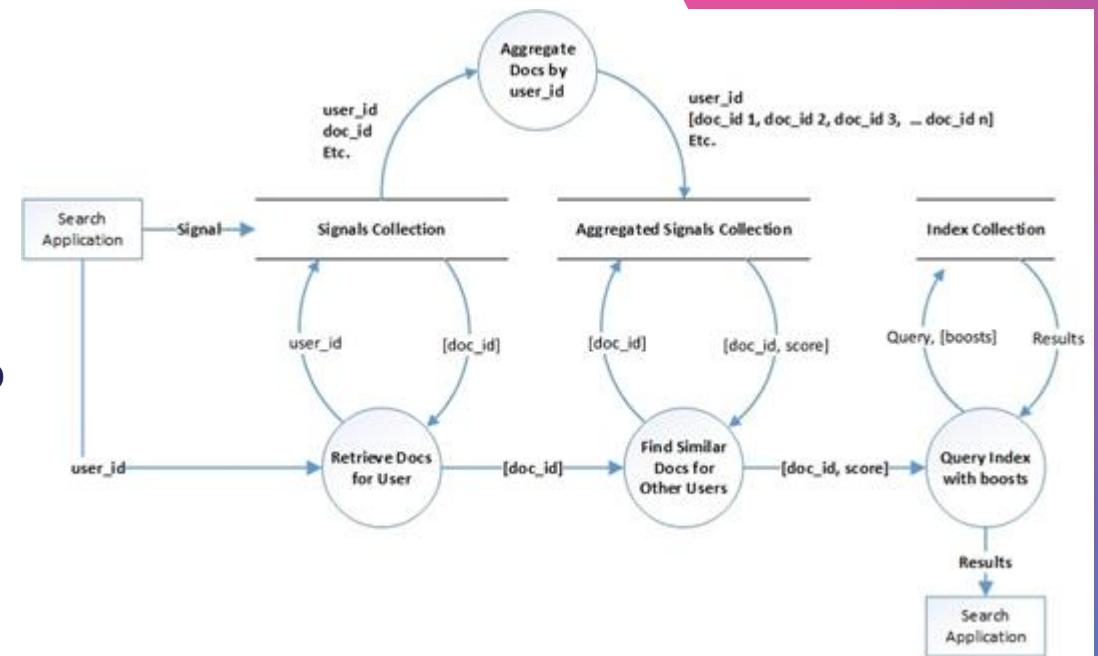
Personalized search refers to search experiences that are tailored specifically to an individual's interests by incorporating information about the individual beyond the specific query provided.

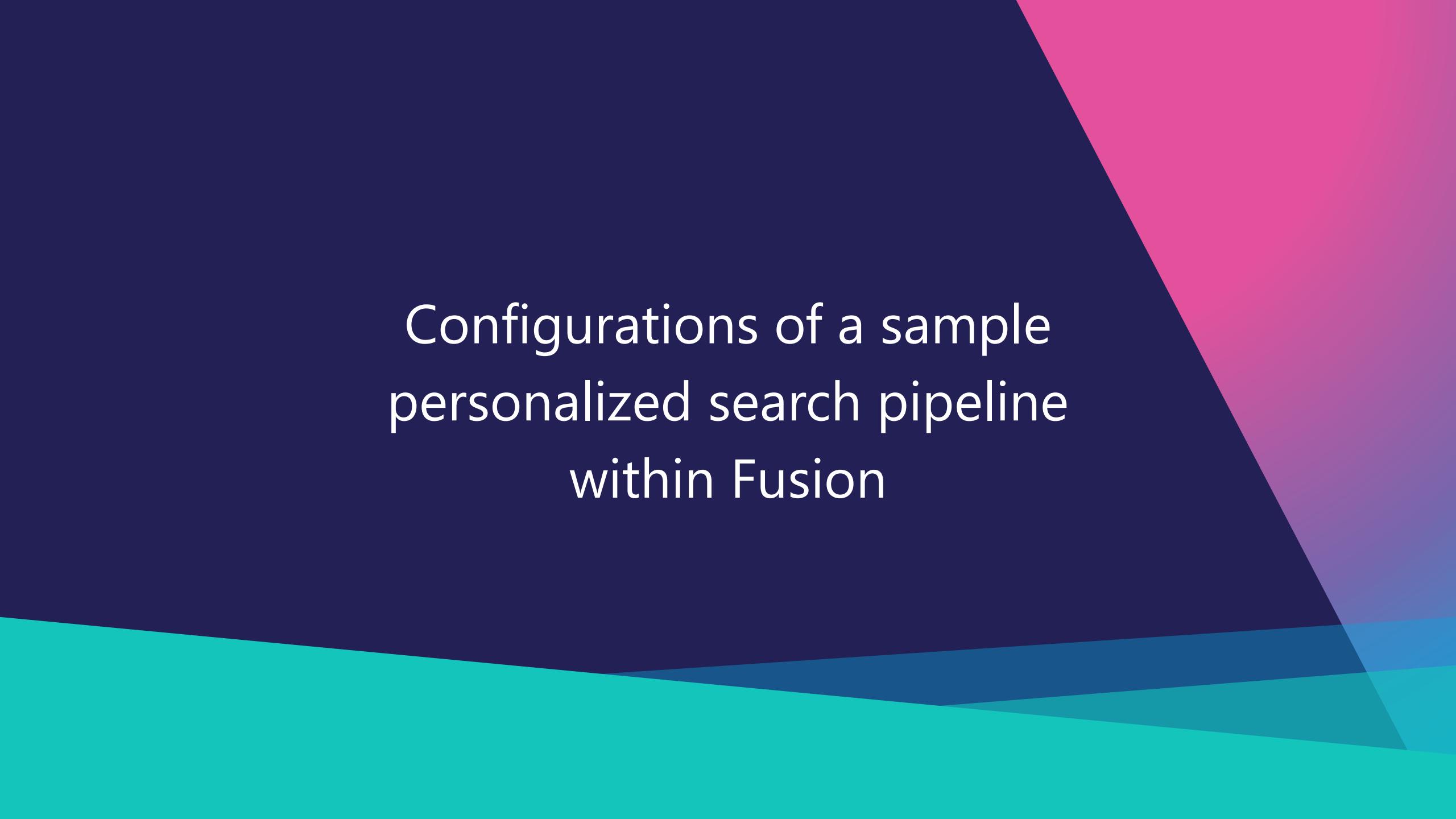
Factors that could be used to influence personalized search include:

- Query History
- Click History
- Location
- Social Media
- HR Data (if acceptable)
- Organizational Data

Why does it matter in an Enterprise Search environment?

Google does it – personally, I don't like this answer 😊


We can provide you with results that are more useful to you than the standard results


We can predict what you might be interested in without you even asking

Perhaps we can improve your safety and security

How we accomplished data-driven personalization natively within Fusion

1. Capture Signals
2. Aggregate Signals
3. Create a user-weighted documents collection
4. Train ALS Recommender Model
5. Generate “Items for Users” Recommendations
6. Incorporate Recommendations into Query Pipeline to Influence Results

Configurations of a sample
personalized search pipeline
within Fusion

Create a user-weighted documents collection

Job: Signals Aggregation

▼ LEGACY AGGREGATION

Grouping Fields

[+] Grouping Fields

[x] user_id_s 🔍

[x] doc_id_s 🔍

Signal Types

[+] Signal Types

[x] click

Train ALS Recommender Model

Job: ALS Recommender

*** Spark Job ID**
SNL_cf_test
The ID for this Spark job. Used in the API to reference this job. Allowed characters: a-z, , .

Number of User Recommendations to Compute
100
Batch compute and store this many item recommendations per user

Exclude from Delete Filter
If the 'Delete Old Recommendations' flag is enabled, then use this query filter to identify

Number of Users to Recommend to each Item
10
Batch compute and store this many user recommendations per item

Maximum Training Iterations
10
Maximum number of iterations to use when learning the matrix decomposition

Number of Item Similarities to Compute
10
Batch compute and store this many item similarities per item

Implicit Preferences

Delete Old Recommendations

▼ TRAINING DATA SETTINGS

Training Data Filter Query
.
Solr query to filter training data (e.g. downsampling or selecting based on min. pref values)

Training Data Filter By Popular Items
5
Items must have at least this # of unique users interacting with it to go into the sample

Training Data Sampling Fraction
1
Downsample preferences for items (bounded to at least 2) by this fraction

Training Collection User Id Field
user_id_s
Solr field name containing stored user ids

Training Collection Item Id Field
doc_id_s
Solr field name containing stored item ids

Recommender Rank
100
Number of user/item factors in the recommender decomposition (or starting guess for it, if doing parameter grid se...

Grid Search Width
1
Parameter grid search to be done centered around initial parameter guesses, exponential step size, this number of s...

Implicit Preference Confidence
50
Confidence weight to give the implicit preferences (or starting guess, if doing parameter grid search)

Initial Lambda
0.01
Smoothing parameter to avoid overfitting (or starting guess, if doing parameter grid search). Slightly larger value ne...

Random Seed
13
Pseudorandom determinism fixed by keeping this seed constant

Generate “Items for Users” using the resulting collection from ALS model

Query Pipeline Stage: Recommend Items for User

Number of Recommendations
100

Model ID
*

Recommendation Collection
SNL_items_for_user_recommendations
If left blank, the default recommendation collection fo

Results Location

As Boosts
If As Response is chosen, then the result of the RPC ca

Model ID Field
modelId
the name of the field in the recommendation collectio

Scale Boosts
Scale the boost values to a [min,max] range

* Minimum value of the scale range
0

* Maximum value of the scale range
10

Boost Field
id
The field name to boost the values on.

* Boost Method
query-param
The boost method to use. query-parser should be chosen if defType!=edismax for main query.

* Boost Param
bq
'Boost' multiplies scores by the boost values whereas 'bq' adds optional clauses to main que...

User ID Request Parameter
user_id
The name of the request parameter containing the user ID

User ID Field
userId
the name of the field in the recommendation collection where user ID is stored

Item ID Field
itemId
the name of the field in the recommendation collection where item ID is stored

Weight Field
weight
the name of the field in the recommendation collection where weight of the recommendati...

Model Collection ID
SNL_cf_test
The name of the collection where models are stored. By default this is {app_name}_recomm...

Examples

Results - Example – “Anonymous” v. Frequent Conference Goer

conference Choose Sort Field Parameters (2) URI

non-personalized_pipeline personalized_pipeline

VACT Conference Rooms

title: VACT Conference Rooms

content: CRS, Meetings, Conference Rooms, Conference Calls, conference call, teleconference, teleconferencing, Conference Room Scheduler

Score: 25.227148 [show fields](#)

Attending a Conference

title: Attending a Conference

content:). Share Follow Attending a Conference It looks like your browser does not have JavaScript enabled. Please turn on JavaScript and try

Score: 32.163067 [show fields](#) ↑ Rank +2

FIN002 Obtain Approval to Attend a Conference or Sponsor or Host an Event Policy

title: FIN002 Obtain Approval to Attend a Conference or Sponsor or Host an Event Policy

content: FIN002 Obtain Approval to Attend a Conference or Sponsor or Host an Event Policy Sandia manages conference related decisions

Score: 23.739283 [show fields](#)

Expense Report Plus

title: Expense Report Plus

content: Travel, WebER, Reimbursements, Foreign Travel, International Travel, Employee Expense Reporting, Conferences, ETA, ET, Expense

Score: 27.81516 [show fields](#) ↑ Rank +4

Attending a Conference

title: Attending a Conference

content:). Share Follow Attending a Conference It looks like your browser does not have JavaScript enabled. Please turn on JavaScript and try

Score: 23.601522 [show fields](#)

VACT Conference Rooms

title: VACT Conference Rooms

content: CRS, Meetings, Conference Rooms, Conference Calls, conference call, teleconference, teleconferencing, Conference Room Scheduler

Score: 25.227148 [show fields](#) ↓ Rank -2

1 2 3 4 5 6 7 8 ...3701 Next

1-10 of 37,007 docs (28 ms, max-score 25.227148)

1 2 3 4 5 6 7 8 ...3701 Next

1-10 of 37,007 docs (51 ms, max-score 32.163067)

Results - Example – Regular Employee v. Manager

award Choose Sort Field Display Fields Parameters (2) New Load...

regular_employee	manager
<h3>Performance Awards</h3> <p>title: Performance Awards content: Performance Awards What is an Individual Performance Award IPA An IPA is a part of the compensation review cycle to recognize Score: 27.341967 show fields</p>	<h3>Spot Award - Manager's Page</h3> <p>title: Spot Award - Manager's Page content: Job Aids, job aid, jobaid, Awards, performance award, Spot Awards Score: 33.439606 show fields </p>
<h3>Spot Awards</h3> <p>title: Spot Awards content: Job Aids, job aid, jobaid, Awards, performance award, Spot Awards Score: 27.310514 show fields</p>	<h3>Spot Awards</h3> <p>title: Spot Awards content: Job Aids, job aid, jobaid, Awards, performance award, Spot Awards Score: 31.84894 show fields</p>
<h3>Spot Award - Manager's Page</h3> <p>title: Spot Award - Manager's Page content: Job Aids, job aid, jobaid, Awards, performance award, Spot Awards Score: 26.520752 show fields</p>	<h3>Performance Awards</h3> <p>title: Performance Awards content: Performance Awards What is an Individual Performance Award IPA An IPA is a part of the compensation review cycle to recognize Score: 27.336266 show fields </p>
<h3>NWPMU Operations: DP Awards of Excellence</h3> <p>1 2 3 4 5 6 7 8 ...2602 Next 1-10 of 26,011 docs (37 ms, max-score 27.341967)</p>	<h3>NWPMU Operations: DP Awards of Excellence</h3> <p>1 2 3 4 5 6 7 8 ...2602 Next 1-10 of 26,011 docs (259 ms, max-score 33.439606)</p>

Observations

- It worked! The results change when personalization is enabled.
- This personalization is not based solely on the current user’s click history but what other individuals with similar interests clicked on
- This approach produces “inferences” of what the current individual might be interested in
- Similar types of users had similar recommendations
 - Frequent Conference Goers
 - Managers
- Level of personalized results is configurable
- A user with no click history is given standard search (no personalization).

Considerations

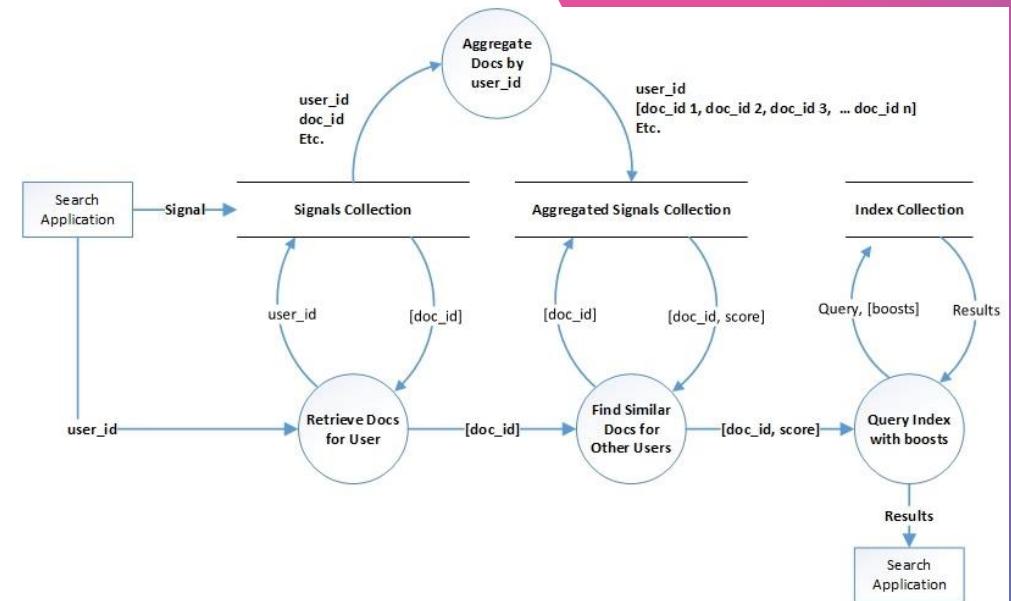
- The model generates a query-agnostic list of recommended documents and scores.
- Only documents that pass the query parsing stage will receive a boost, implying that irrelevant documents to the query will be filtered out, and thus not boosted.
- However, pages will be boosted whenever they pass the query parser.
 - i.e. if <https://www.example.com/> appeared in the queries “foo” and “bar”, it will be boosted in both.

Next Steps

- We have a policy not to introduce changes into our search application until we evaluate them
- Changes must not hurt the search results and, hopefully, they should improve the search results
- Compare to Golden Standard - We have a tool that will evaluate changes in search results based on how well they match what experts list as the most desirable results for selected queries.
- Golden Standard does not work when results change depending on who is currently using the system!
- Must consider alternatives such as
 - Focus Groups
 - A/B Experiments

References

1. <https://doc.lucidworks.com/fusion-ai/4.1/user-guide/boosting/index.html>
2. https://en.wikipedia.org/wiki/Implicit_data_collection
3. https://en.wikipedia.org/wiki/Recommender_system
4. <https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe>
5. <https://lucidworks.com/2017/08/24/machine-learning-model-training-and-prediction-using-lucidworks-fusion/>


THANK YOU

Previous Approach

Previously, Clay had demonstrated personalization by using custom solr sub-queries to lookup and do collaborative filtering on-the-fly from within the query pipeline.

In this approach, there are three mechanisms occurring:

- $f : user \rightarrow \{page_0, \dots, page_n\}$
 - Gather user click history, a set of n pages
- $g : \{page_0, \dots, page_n\} \rightarrow \{(page_0, score_0), \dots, (page_m, score_m)\}$
 - Find related documents based on collaborative-filtering-like solr query.
- $h : (query, \{(page_0, score_0), \dots, (page_m, score_m)\}) \rightarrow (page_0, \dots, page_n)$
 - Query the index with additional boosts from the related documents.

Approach

Fusion provides an ALS (alternating least squares) collaborative filtering job that trains a model to recommend pages for users.

By pretraining this model, it essentially accomplishes the functionality of both f and g from the previous approach, while also eliminating the runtime computation.

It also simplifies the mechanism.

- $a : user \rightarrow \{(page_0, score_0), \dots, (page_m, score_m)\}$
 - Evaluate the model with the user to get a list of recommended pages and scores
 - This is essentially a composition of f and g from the previous approach
- $b : (query, \{(page_0, score_0), \dots, (page_m, score_m)\}) \rightarrow (page_0, \dots, page_n)$
 - Query the index with additional boosts from the recommended pages.