
P R E S E N T E D B Y

Sandia National Laboratories is a multimission

laboratory managed and operated by National

Technology & Engineering Solutions of Sandia,

LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of

Energy’s National Nuclear Security

Administration under contract DE-NA0003525.

Configuring Recommendations
for Personalized Search at
Sandia National Laboratories

Clay Pr yor and Ryan Cooper

SAND2019-10363 C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government

SAND2019-10363C

Personalized Search at
Sandia National Laboratories

C L AY T O N P R Y O R

A B S T R A C T

In the scope of enterprise search, the assumed preference

of each user is the number of times that they have

previously clicked on pages, an observed weight. This

weight is then used to co-cluster (associate) with other

users to make predictions about what pages they will be

most likely to find useful based on their previous click

history.

This presentation will describe how we configured

personalized search in days, not weeks, months, or even

years. We will review the configuration process from data

gathering and model building to the query configuration

used to return personalized results to enterprise search

customers. We will share results and interesting

observations as well.

R YA N C O O P E R

Agenda

• What is Personalization?

• What is Personalized Search?

• Why does it matter in an Enterprise Search environment?

• How we accomplished data-driven personalization natively within Fusion

• Fusion configurations

• Examples

• Observations and Considerations

• Next steps

What is Personalization?

What is Personalized Search?
Personalized search refers to search experiences that are tailored specifically to an
individual's interests by incorporating information about the individual beyond the
specific query provided.

Factors that could be used to influence personalized search include:
• Query History

• Click History

• Location

• Social Media

• HR Data (if acceptable)

• Organizational Data

Why does it matter in an
Enterprise Search environment?

Google does it – personally, I don’t like this answer ☺

We can provide you with results that are more useful to you than the standard results

We can predict what you might be interested in without you even asking

Perhaps we can improve your safety and security

How we accomplished data-driven
personalization natively within Fusion

1. Capture Signals

2. Aggregate Signals

3. Create a user-weighted documents collection

4. Train ALS Recommender Model

5. Generate “Items for Users” Recommendations

6. Incorporate Recommendations into Query Pipeline to

Influence Results

Configurations of a sample

personalized search pipeline

within Fusion

Create a user-weighted documents collection
Job: Signals Aggregation

Train ALS Recommender Model
Job: ALS Recommender

Generate “Items for Users”
using the resulting collection
from ALS model

Query Pipeline Stage:
Recommend Items for User

Examples

Results - Example – “Anonymous” v. Frequent Conference Goer

Results - Example – Regular Employee v. Manager

Observations
◦ It worked! The results change when personalization is enabled.

◦ This personalization is not based solely on the current user’s click history but what other
individuals with similar interests clicked on

◦ This approach produces “inferences” of what the current individual might be interested in

◦ Similar types of users had similar recommendations

◦ Frequent Conference Goers

◦ Managers

◦ Level of personalized results is configurable

◦ A user with no click history is given standard search (no personalization).

Considerations
◦ The model generates a query-agnostic list of recommended documents and scores.

◦ Only documents that pass the query parsing stage will receive a boost, implying that irrelevant
documents to the query will be filtered out, and thus not boosted.

◦ However, pages will be boosted whenever they pass the query parser.

◦ i.e. if https://www.example.com/ appeared in the queries “foo” and “bar”, it will be boosted in both.

Next Steps

◦ We have a policy not to introduce changes into our search application until we evaluate them

◦ Changes must not hurt the search results and, hopefully, they should improve the search results

◦ Compare to Golden Standard - We have a tool that will evaluate changes in search results based
on how well they match what experts list as the most desirable results for selected queries.

◦ Golden Standard does not work when results change depending on who is currently using the
system!

◦ Must consider alternatives such as

◦ Focus Groups

◦ A/B Experiments

References

1. https://doc.lucidworks.com/fusion-ai/4.1/user-guide/boosting/index.html

2. https://en.wikipedia.org/wiki/Implicit_data_collection

3. https://en.wikipedia.org/wiki/Recommender_system

4. https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe

5. https://lucidworks.com/2017/08/24/machine-learning-model-training-and-prediction-using-lucidworks-fusion/

THANK YOU

Previous Approach
Previously, Clay had demonstrated personalization by using
custom solr sub-queries to lookup and do collaborative filtering
on-the-fly from within the query pipeline.

In this approach, there are three mechanisms occurring:

• 𝑓 ∶ 𝑢𝑠𝑒𝑟 → {𝑝𝑎𝑔𝑒0, … , 𝑝𝑎𝑔𝑒𝑛}

– Gather user click history, a set of n pages

• 𝑔 ∶ {𝑝𝑎𝑔𝑒0, … , 𝑝𝑎𝑔𝑒𝑛} → { 𝑝𝑎𝑔𝑒0, 𝑠𝑐𝑜𝑟𝑒0 , … , 𝑝𝑎𝑔𝑒𝑚, 𝑠𝑐𝑜𝑟𝑒𝑚 }

– Find related documents based on collaborative-filtering-like solr query.

• ℎ ∶ 𝑞𝑢𝑒𝑟𝑦, 𝑝𝑎𝑔𝑒0, 𝑠𝑐𝑜𝑟𝑒0 , … , 𝑝𝑎𝑔𝑒𝑚, 𝑠𝑐𝑜𝑟𝑒𝑚 →
(𝑝𝑎𝑔𝑒0, … , 𝑝𝑎𝑔𝑒𝑛)

– Query the index with additional boosts from the related documents.

Approach

Fusion provides an ALS (alternating least squares) collaborative filtering job that

trains a model to recommend pages for users.

By pretraining this model, it essentially accomplishes the functionality of both f and

g from the previous approach, while also eliminating the runtime computation.

It also simplifies the mechanism.

• 𝑎 ∶ 𝑢𝑠𝑒𝑟 → { 𝑝𝑎𝑔𝑒0, 𝑠𝑐𝑜𝑟𝑒0 , … , 𝑝𝑎𝑔𝑒𝑚, 𝑠𝑐𝑜𝑟𝑒𝑚 }

– Evaluate the model with the user to get a list of recommended pages and scores

– This is essentially a composition of f and g from the previous approach

• b ∶ 𝑞𝑢𝑒𝑟𝑦, 𝑝𝑎𝑔𝑒0, 𝑠𝑐𝑜𝑟𝑒0 , … , 𝑝𝑎𝑔𝑒𝑚 , 𝑠𝑐𝑜𝑟𝑒𝑚 → (𝑝𝑎𝑔𝑒0, … , 𝑝𝑎𝑔𝑒𝑛)

– Query the index with additional boosts from the recommended pages.

