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Comparing different (but related) chemical systems

Autoignition chemistry
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Deliberate control of

reaction conditions
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` Complex networks of chemical

reactions form particulates

Human effects on reaction conditions

are accidental

What are the "goals"?



Even for complex systems, chemistry often depends on
reactions of a few key intermediates

• ROO. H •000H —(1-02)4 ketohydroperoxides

• Criegee intermediates

Reactions often have multiple possible channels that have
different impacts on the complex system behavior

Characterizing individual crucial intermediate steps is
often difficult if one looks only at the global system
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•
conjugate alkene + H02

• QOOH cyclic ether + OH

+ 02 11,

The chemistry of
autoignition has been
studied for many decades —

Some details remain hidden

•
• • OQ'=0 + OH + OH (chain-branching)

Zador, J.; Taatjes, C. A.; Fernandes, R. X.
Prog. Energy Combust. Sci. 2011, 37, 341.

Kinetic Models for Ignition
Chemistry Require Knowing
Reactions of "Intermediates"

rQ0OH H2

HO CH2
H2

H2 R00-
0 CH3

H2 _J

• QOOH + 02 is responsible for chain
branching

• Chain branching step goes through
dissociation of a ketohydroperoxide

• Different isomers behave differently
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Unraveling the structure and chemical mechanisms of highly

oxygenated intermediates in oxidation of organic compounds

Wang et al., PNAS 114, 13102-13107 (2017)

Tropospheric oxidation and autoignition
share some isomerizations and intermediates

Other oxidants may entail new intermediates
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Synchrotron photoionization mass
spectrometry can detect and
characterize these intermediates

Form intermediates in a
controlled way by pulsed

laser photolytic initiation of

El oxidation
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.--• 2-methyioxetene
— — Tetrahydrofuran \P"
— Dimathylaxirane
— • Ethyluirane

r

Time-Dependent
Chemical Kinetics

David Osborn

Isomer-Resolved
Species Identification
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RH
•

+ OH - H20

• R alkene +

+ 02 ik

ROO•

• Q0OH  > cyc

02 ik

• 00Q0OH fi-s

•
HOOQ'OOH

•
HOOQ'=0 + OH,

• •
• OQ'=0 + OH + OH (chair

The autoignition or autoxidation process can be
dramatically affected by resonance stabilization

Double resonance stabilization
allowed first direct detection of
000H

mlz = 125
[02], = 1.5 x cre

0 - 40 rns

7.5 8,0 8.5 9.0

Photoionization Energy (eV)

J.D. Savee, E. Papajak, et al.,
Science 347, 643-646 (2015).
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Ketone oxidation — resonance
stabilized 000H are preferred

Scheer et al., Phys. Chem. Chem. Phys. 16, 13027-13040

(2014); J. Phys. Chem. A 120, 8625-8636 (2016)

!
RO2

O0OH

•

unimolecular
decomposition

7



Butanone is a prototype for
ketone oxidation
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Resonance stabilized radical
shows less (3-scission

/I-Scission
Pro ucts

ROO •

I 

Direct HO,Elimination

HO + alkene
2

•000H
Chain Propagation

fi-Scission
OH + O-heterocycle

OH + Co-products

Decomposition (e.g., P-scission)
of initial R or of Q0OH can
divert course of oxidation



Resonance stabilized QOOH
shows less reactivity with 02
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RH

+ OH - H20
•

•
• R alkene + R'

+ 02 11,

ROO• conjugate alkene + H02

•
• QOOH  > cyclic ether + OH

+ 02 '1
•

• 00Q0OH /3-scission products + OH

•
HOOQ'OOH

•
HOOQ'=0 + OH

• •
• OQ'=0 + OH + OH (chain-branching)

■

•
+ OH

resonance

+ 02

RO

1k
O

cyclic ether
•

+ OH - H20
•

• R carbonyl + R'

+ 02 '1

•

ROO• unsaturated heterocycle + HO2

• QOOH > multifunctional oxygenate + OH

+ 02 '11,

ene

H20
•

tabilized R alkene + R'

0 •
•

diene + H02

•
unsaturated ether + OH

/3-scission products + OH
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Comparing cyclohexane and tetrahydropyran
shows effect of ether group

H2 H2 .t12. 

H2C CH2 H2C CH2 H2C CH2

•
H2 CH 

/C) 
• HC OH HC 0 HC 0

O 0 O

•

6-hydroperoxytetrahydro-2H-pyran-2-y1

•

OH

Ming-Wei Chen et al.,

Phys. Chem. Chem. Phys.

20, 10815 — 10825 (2018)

.

Oxidation products may undergo
substantially different oxidation
chemistry than the initial reactants

Alkane oxidations create substantial
fractions of functionalized products

0.3
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0.0 •
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Temperature (K)

B. Rotavera, R. L. Caravan and CAT, "Subsequent R + 02 Chemistry

of Intermediates Formed in Low-Temperature R + Reactions:

Potential Importance in Modeling Autoignition Behavior," SANDIA

REPORT SAND2017-9099
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RH
+ OH 1, H20

• R alkene 4

+ 02
ROO •

• WON  > Cy(

+ 02
• 00Q0OH

•

HOOQ'OOH

•

HOOQ'=0 + OH

• •

• OQ'=0 + OH + OH (chaii

Compare the autoignition process to the autoxidation
to highly oxygenated species in the troposphere

What stops the process towards chain branching?
CH3

H2

H2

Tertiary R: No KHP — 3rd 02 addition instead
Wang et al., Combust. Flame 164, 386-396 (2016).

CH3

+ 02 isomerize1 HO
0

CH,
H2

fl-s HO CH3 H3C 1 CI-ICI-1

0 H2 C

?
CH33.-
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C 'CH3

CH3
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What else can intercept these molecules on the path?
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What if ketohydroperoxides don't fall apart to
two radicals? Look at y-ketohydroperoxides

0-0 bond fission leads to chain branching

OH
O O

C:11 

O OH
C:11 

O H20

Jalan et al. pointed out that gamma-KHP can
isomerize by Korcek reaction

•OCHCH,CHO + •OH

49.5

0.0

Ketohydroperoxide Cyclic Peroxide

Jalan et al., J. Am.

Chem. Soc. 2013,135,

11100-11114

So far observed KHP species are all gamma-ketohydroperoxides
(,ne(n..3()C. kLU125))

show even more pathways, including
water elimination to form dicarbonyl

O

101 COM L-75.3

COMA

-73.9

Acid + Carbonyl
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Ketohydroperoxides have now been
observed in many kinetic systems

exp. simul.
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Pulsed photolytic
neopentane
oxidation shows KHP
formation

Eskola et al., Phys. Chem. Chem.
Phys. 19, 13731-13745 (2017)

m/z= 100
— 675 K
— 650 K
— 590 K
— 550 K

c

0 10 20
Time / ms

30

Pulsed photolytic
oxidation of butane
shows KHP formation

Identified as 3-
hydroperoxybutanal

Eskola et al., Proc. Combust. Inst. 35,
291-298 (2015)
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dimethyl ether oxidation
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Moshammer et al. J. Phys.
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(2015) 17



In butane-d4 oxidation,
acetone-d3 may be a marker
for Korcek decomposition
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Butane oxidation is a test
system for KHP chemistry

KHP observed by
photoionization mass
spectrometry in jet-stirred
reactor and photolysis
experiments

Korcek pathways make formic
acid + acetone or acetic acid
+ acetaldehyde

Other non-chain branching
pathways for KHP may occur
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Next steps -- make KHP
directly and follow reactions?
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Modeling acid
formation may
constrain Korcek rate
coefficient
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Next steps -- make KHP
directly and follow reactions?
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Complex Chemical Systems One Step at a Time

Analysis of controlled oxidation reactions — photolysis, isotopic
labelling — by isomer specific detection

Products of one reaction are the reactants of the next

Functionalization can bring resonance stabilization, change pathways

Start on the intermediate steps

22
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