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Hydrocarbon oxidation drives many complex chemical system

Autoignition chemistry Tropospheric oxidation

Complex networks of
chemical reactions

Deliberate control of
reaction conditions

Simple goal:
clean/efficient

John Dec, Sandia

William Putman, NASA/Goddard

Complex but important!!
Look at what parts can be understood

- Complex networks of chemical
reactions form particulates

Human effects on reaction conditions
are accidental

What are the "goals"?
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Unraveling the structure and chemical mechanisms of highly
oxygenated intermediates in oxidation of organic compounds

Wang et al., PNAS 114, 13102-13107 (2017)

Tropospheric oxidation and autoignition
share isomerizations and key intermediates

Other oxidants may involve other reactive
intermediates

3

Zador, J.; Taatjes, C. A.; Fernandes, R. X.

Prog. Energy Combust. Sci. 2011, 37, 341.
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Zador, J.; Taatjes, C. A.; Fernandes, R. X.

Prog. Energy Combust. Sci. 2011, 37, 341.

Other reactions can remove
intermediate species and
interrupt the chain

Radical-radical reactions can
terminate chain chemistry

Some of these radical-radical
reactions are important, e.g.,
in tropospheric chemistry

Radical-radical reactions
involve more than one
potential energy surface
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• Multireference transition
states - e.g., radical-radical
reactions with singlet and
triplet product channels
• Multireference electronic

structure and effective two-
transition state kinetics

• Product branching can probe
which state participates

• Even simple reactions start to
appear pretty complicated

• Look at what parts can be
understood
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Synchrotron photoionization mass
spectrometry can detect and
characterize products and
intermediates

Form reactants in a
controlled way by pulsed

laser photolytic initiation
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Time-Dependent
Chemical Kinetics

David Osborn

Isomer-Resolved
Species Identification
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The reaction OH + CH300 has
several product channels
The rate
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• That looks like a challenge to
experiment!

• Make CH300 and OH
photolytically (CH31 / H202 / 02 or F

+ CH4 / H20 / 02)

• Isotopically label reactants to
distinguish products we want
• 13CH300 + OH
• CH300 + OD

• Have photoionization cross
sections for quantifying H202,
CH2O, CH3OH

•

Ratios of cross sections to that of
methanol measured precisely (Dodson et al., J.
Phys. Chem. A, 2015, 119, 1279-1291)
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Consider competing reactions that make
methanol — like CH300 self-reaction



Yan-Ni Liang; Jun Li; Quan-De
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Li; J. Phys. Chem. A 2011, 115,
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• CH300 self reaction makes 2
CH30 or CH2O and CH3OH
• CH2O : CH3OH ratio implies

methoxy channel 41 ± 4% (Tyndall
et al , J. Phys. Chem. A, 1998, 102, 2547-2554)

• CH300CH3< 6%

• Same products as OH + CH300!

• Theory on CH300 reaction is
interesting

• Barriers seem too high!

• Suggested ISC to make triplet
product channel?
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• Suggested ISC to make triplet
product channel?
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Objection that 2 CH30 would make
CH300CH3 rather than disproportionate

But CH30 self reaction is dominated by
disproportionation 9x addition, Shortridge &
Heicklen, Can. J. Chem. 51 (1973))



Getting branching fractions
from absolute concentrations
entails lots of uncertainties

Initial radical concentration
(depletion profile)

Methoxy is converted rapidly
to formaldehyde at high 02

But what about other
products?

CH300CH3 is "negligible"
But there it is! Use upper limit
value for its branching

0.6 — OH + CH300
CH3OH

0.4

0.2

0.0

-0.2

7% 15%

CH3OH branching = 0%

0 20
Time (ms)

40

25%

60

Propagating uncertainties gives discouraging
picture — but there is a way out ...



Calibration quantities are
measured from ratios

CH2O and CH3OH have similar
dependence on many
experimental factors

Ratio is much more robust to
many kinetic parameters

Can see clear added CH3OH
production when OH is added
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In fact, branching fraction of 15% is
"break even" for the effect of the
reaction on tropospheric methanol

Reaction may reduce CH3OH levels

Caravan et al., in press 13
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Measured branching ratio for reaction
— what about other products?

Criegee intermediate negligible

Stabilization of trioxide calculated to
beN 11% at 1 atm (Willer et al.)

Chamber experiments with PTR-MS
show apparently higher CH3OH (17%)!

Chamber sampling might convert
trioxide heterogeneously

PTR-MS of trioxide may not give signal
at parent mass

If that explanation is right, MPIMS
should see trioxide product at high P

• Caravan et al., in press
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CH300 + OD

740 Torr

13CH300 + OH

30 Torr

ink

Caravan et al., in press

Trioxide should appear at high
pressure (Willer et al. calculate
9.6% at 740 Torr) but not at low
pressure (0.016% at 30 Torr)

Trioxide should rise rapidly, with
no secondary formation

15
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H,C00 ('A') + H (2c

H3COO (2A) I

1.0 2.0 3.0
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Miliordos and Xantheas, Angew. Chem. Int. Ed. 55, 1015-1019, 2015

•

• Criegee intermediates have
multireference electronic character
• Ground state is dominantly the

closed-shell singlet zwitterion

0 • •

H2C O H2C

• How should they react? ... not like
radicals!

• CH300 + NO 7.5 x 10-12 cm3 S-1
Lightfoot et al., Atmos. Environ. A 26, 1805 — 1961 (1992)

• CH200 + NO < 6 x 10-14 cm3 s-1
Welz et al., Science 335, 204 — 207 (2012)

• Many reactions with closed-shell
species are much faster!

16
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For Criegee intermediates have
strategy for direct synthesis

Verified by mass, kinetics, and
spectrum

Reaction of CH3SOCH2 with 02

makes CH200

17
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— CH200 (calculated)
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Welz et al., Science 335, 204 — 207 (2012);
Taatjes et al. Science 340, 177-180 (2013)

W: 

For Criegee intermediates have
strategy for direct synthesis

Verified by mass, kinetics, and
spectrum

Reaction of CH3SOCH2 with 02
makes CH200

Reaction of gem-iodoalkyl
radicals with 02 makes lots of
carbonyl oxides

Now can measure carbonyl oxide
reaction kinetics directly
Craig Murray (Irvine); Marsha Lester (Penn); Jim
Lin (IAMS); Andrew Orr-Ewing (Bristol); Bill Green
(MIT); Paul Seakins, Dan Stone (Leeds), etc.
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The chemistry of ozonolysis was largely worked out
from solution phase — gas phase can be different!

Criegee (1975) outlined four types of reactions that
carbonyl oxides undergo: dimerization, reaction with
carbonyls, isomerization, and reactions with "proton
active substances"

Generalization (CAT, Annu. Rev. Phys. Chem. 2017):
Reactions with other 1,3 bipoles
Unimolecular reactions
Cycloadditions
Insertions
Addition to radical species

■
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Proton active species — insertion

Acids react with carbonyl oxides at
supercollisional rates (Welz et al., Angew.

Chem. Int. Ed. 53, 4547-4550 (2014); Foreman et al.,
Angew. Chem. Int. Ed. 55, 10419-10422
(2016);Chhantyal-Pun et al., Angew. Chem. Int. Ed.
56, 9044-9047 (2017))

Carbonyl oxide reactions in
solution: ROH>H20>CH3CO2H

In gas phase RCO2H » ROH, H20

Fast reaction general for all acids
PFOA reacts slowly with OH

Reaction with CH200 is fast:

(4.7 ± 0.7) X 1040 Crn3.0

Products are hydroperoxyesters (c.f.
Cabezas & Endo, ChemPhysChem 18, 2017, 1860-1863)

o
Eskola et al., unpublished

5

O exp. - - - fit [PFOA] = 0

A exp. — fit [PFOA] = 6.1 x 1011 cm 3

O exp. — — fit [PFOA] = 1.8 x 1012 cm 3

10 15
time / ms

20 25

_ CH200 + HCI reaction

-+. 37CICI-1200H+

-0- 35CICH200H+

- -4... CH2001-1+

Caravan, Rotavera et al.,
unpublished
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Reactions with radicals?

Look at NO2 — how does this
reaction proceed?

Could be source of NO3?
No NO3 observed

See signal at mass of adduct

See decrease in carbonyl

Upper limit of 30% NO3

May limit effect of carbonyl
oxides on NO3 concentrations

Caravan et al., Faraday Discuss. 200, 313-330 (2017)
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14 -3
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Photoionization spectrum suggests
adduct identification

Adduct formation consistent with
theory (Vereecken and Nguyen, lnt. J. Chem. Kinet.
49, 752-760 (2017))
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•

What about "real" radicals?

Suggestion that reactions of
Criegee intermediates with
alkylperoxy radicals can initiate
oligomerization reactions (Zhao et al.,
Physical Chemistry Chemical Physics 17:12500-14)

Make CH300 and CH200 together

Observe possible products but
only at dissociative ionization mass

Needs more investigation!
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