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Hydrocarbon oxidation drives many complex chemical systems

Autoignition chemistry Tropospheric oxidation

William Putman, NASA/Goddard
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Unraveling the structure and chemical mechanisms of highly
oxygenated intermediates in oxidation of organic compounds
Wang et al., PNAS 114, 13102-13107 (2017)

Tropospheric oxidation and autoignition
share isomerizations and key intermediates

Other oxidants may involve other reactive
intermediates
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'ROO. | *ROO Radical-radical reactions can
terminate chain chemistry
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+0, | Some of these radical-radical
*0O0QOOH [scission products + OH Eo»- reactions are importa nt’ e.g.,
l. in tropospheric chemistry
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l Radical-radical reactions
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e e TR * Even simple reactions start to
i “ appear pretty complicated

Li; J. Phys. Chem. A 2011, 115,
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Synchrotron photoionization mass
spectrometry can detect and 2
characterize products and \‘i“i’ |

intermediates
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Form reactants in a Time-Dependent
controlled way by pulsed Chemical Kinetics

. laser photolytic initiation -

Energy-Integrated Photoion Signal
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e That looks like a chaIIenge to Ratios of cross sections to that of

' methanol measured precisely (podson etal., ..
experime nt! Phys. Chem. A, 2015, 119, 1279-1291)
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* |sotopically label reactants to
distinguish products we want

o

10.5 11.0 1.5 12.0
s 13 CH3 00 + OH Photoionizaion Energy (eV)
= CH,00+0D Absolute scale by reference to propene
* Have photoionization cross
sections for quantifying H,0,, Consider competing reactions that make
CH,0, CH,OH methanol — like CH;00 self-reaction
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Li; J. Phys. Chem. A 2011, 115,
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Giovanni Ghigo, Andrea Maranzana, 3
and Glauco Tonachini

J. Chem. Phys. 118, 10575 (2003); CAS(16,12)-PT2/6-311G(2d f,p)
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* CH;00 self reaction makes 2
CH;0 or CH,0 and CH;0H

" CH,O : CH;0H ratio implies

methoxy channel 41 + 4% (tyndall
etal., J. Phys. Chem. A, 1998, 102, 2547-2554)

= CH;00CH; < 6%
= Same products as OH + CH,00!

* Theory on CH;00 reaction is
interesting

* Barriers seem too high!

e Suggested ISC to make triplet
product channel?
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* Suggested ISC to make triplet
product channel?
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T. S. Dibble, Atmos. Environ.
42, 2008, 5837-5848 CH;UEE B:):ll;-ﬁ

Objection that 2 CH;0 would make
CH;00CH; rather than disproportionate

But CH;0 self reaction is dominated by

disproportionation (~ 9x addition, Shortridge &
Heicklen, Can. J. Chem. 51 (1973))




Getting branching fractions i

from absolute concentrations
entails lots of uncertainties

Initial radical concentration
(depletion profile)

Methoxy is converted rapidly
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to formaldehyde at high O,
But what about other 3 LI
products? Y CHZOH branching = 0%
CH;00CH; is “negligible” |

But there it is! Use upper limit WS

value for its branching

Propagating uncertainties gives discouraging
picture — but there is a way out ...
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Calibration quantities are
measured from ratios

CH,0 and CH;0H have similar
dependence on many
experimental factors

Ratio is much more robust to
many kinetic parameters

Can see clear added CH,0H
production when OH is added
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(m/z = 64 scaled)
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Fitting ratio of CH,O to CH;0H
gives value for branching ratio

30 Torr °CH,00 + OH

Model branching:
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30 Torr CH;0H
branching fraction

CH500 + OH
9+5%

e In fact, branching fraction of 15% is
o @ i “break even” for the effect of the

Time (ms) — = 15% s 30% O

"5 Experiment reaction on tropospheric methanol

740 Torr CH;0H RSt u
branching fraction
6£2%

Reaction may reduce CH;0H levels

Caravan et al., in press 13
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_ Gl . HCHO Experiment
8 —F“f—, 2,0»— Model: ~=~ Th —— 137(;@_
Measured branching ratio for reaction ~ | Bk oGS g
— what about other products? R S 30% -
o 0.0 1.0 200300 et
Criegee intermediate negligible 5 RIS et
Stabilization of trioxide calculated to 8
.o o
be ~11% at 1 atm (Miiller et al.) &
Chamber experiments with PTR-MS
H (o)
show apparently higher CH;0H (17%)! L, o 1000 o0 2000 2500 3000

Kinetic time (s)

;0 + CHyOHOOH*

Chamber sampling might convert
trioxide heterogeneously

PTR-MS of trioxide may not give signal
at parent mass

If that explanation is right, MPIMS
should see trioxide product at high P

CHOH,* + Hy0 + 10,
~21

CHyOH," + H,0 + 50,

-43.3
Caravan et al., in press (,CY?F' m
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lon signal / a.u.

"*cH,00"°CH,
m/z 64.044

CH;00 + OD
740 Torr

Trioxide should appear at high
BCH.00 4 OH pressure (Muller et al. calculate
Mo 9.6% at 740 Torr) but not at low

pressure (0.016% at 30 Torr)

Trioxide should rise rapidly, with
no secondary formation

fon signal / a.u,

—O— m/z 33 CH;0D
--®- m/z 65 CH;05D

lon signal /a.u.
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* Criegee intermediates have
multireference electronic character
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closed-shell singlet zwitterion
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CH,;00 + NO 7.5 x 10712 cm3 s-1
Lightfoot et al., Atmos. Environ. A 26, 1805 — 1961 (1992)
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CH,00 + NO <6x10cm3s-1
Welz et al., Science 335, 204 — 207 (2012)

Miliordos and Xantheas, Angew. Chem. Int. Ed. 55, 1015-1019, 2015 . .
= Many reactions with closed-shell

species are much faster!
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CH,S miz = 45.988

Kinetic Time (ms)
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CAT et al., JACS 130,
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—5— CH,S photoionization spectrum
m/z = 46 signal from DMSO oxidation
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For Criegee intermediates have
strategy for direct synthesis

Verified by mass, kinetics, and
spectrum

Reaction of CH;SOCH, with O,
makes CH,00




For Criegee intermediates have
strategy for direct synthesis

Verified by mass, kinetics, and
| spectrum

Reaction of CH;SOCH, with O,

makes CH,00
T : | Reaction of gem-iodoalkyl
~0 zero [H,0] —@- high [H,0] S / - 2
a | = Fit -—Vinylhyd?operoxide < : P | ; radlcals Wlth 02 makes |0t5 Of
H o) d P .
P | oo il e g 3 carbonyl oxides

anti

Now can measure carbonyl oxide
reaction kinetics directly
Craig Murray (Irvine); Marsha Lester (Penn); Jim

Lin (IAMS); Andrew Orr-Ewing (Bristol); Bill Green
(MIT); Paul Seakins, Dan Stone (Leeds), etc.




The chemistry of ozonolysis was largely worked out
from solution phase — gas phase can be different!

Criegee (1975) outlined four types of reactions that

Total pressure (Torr)

carbonyl oxides undergo: dimerization, reaction with
carbonyls, isomerization, and reactions with “proton
active substances”

Generalization (cAT, Annu. Rev. Phys. Chem. 2017):
Reactions with other 1,3 bipoles
Unimolecular reactions
Cycloadditions
Insertions
Addition to radical species

- ’




O exp. ==~ fit [PFOA] = 0
A exp. — fit [PFOA]=6.1x 10" cm™
o exp. = = fit[PFOA]=1.8x10">cm”

Proton active species — insertion

Acids react with carbonyl oxides at

supercollisional rates (welz et al., Angew.

Chem. Int. Ed. 53, 4547-4550 (2014); Foreman et al.,
Angew. Chem. Int. Ed. 55, 10419-10422
(2016);Chhantyal-Pun et al., Angew. Chem. Int. Ed.
56, 9044-9047 (2017))

Carbonyl oxide reactions in
solution: ROH>H,0>CH,CO,H

In gas phase RCO,H >> ROH, H,0 At

—— *cicH,00H"
@~ CH,00H"

0 5
Eskola et al., unpublished time / ms

Fast reaction general for all acids
PFOA reacts slowly with OH

Reaction with CH,00 is fast:
(4.7 £0.7) x 1020 cm3 st

lon signal (scaled) / a.u.

Products are hydroperoxyesters (cf - B s WE
Cabezas & Endo, ChemPhysChem 18, 2017, 1860-1863)

Caravan, Rotavera et al.,

unpublished 20




Reactions with radicals? CFlLaCC)HOO
+NO,

Look at NO, — how does this
reaction proceed?

Could be source of NO,?
No NO; observed
See signal at mass of adduct

See decrease in carbonyl
Upper limit of 30% NO,

May limit effect of carbonyl
oxides on NO, concentrations

Caravan et al., Faraday Discuss. 200, 313-330 (2017)

-3
—— [NO,] = zero molecule cm

14 -3
— [NO,] = 3.4x10 molecule cm

lon signal (m/z 44) / a.u.
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Kinetic time / ms

== m/z 92: CH,O,N
—®— m/z 106: C,H,O,N

T el
92 94 96 98 100 102 104 106 108 11.0

lonization energy / eV
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== m/z 92: CH,0O,N -
- —®— miz 106: C,H,0,N L SBO

Photoionization spectrum suggests
adduct identification

Adduct formation consistent with

theory (Vereecken and Nguyen, Int. J. Chem. Kinet.
49, 752-760 (2017))

Normalized ion signal / a.u.

T
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T
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92 94 96 98 10.0 0.2 10.

lonizatiog/energy / eV

TS3 +64*
+ + + .
4 CH,00NO,
TS2 +20%
=1*
\_ CH,00 .14 TSI
5
NO,
- e -e" -e"
+8.35 eV (AIE) +10.41 eV (AIE +9.37 eV (AIE) +8.49 eV (AIE)
+9.80 eV (VIE) +11.71 eV (VIE) +11.12 eV (VIE) +9.56 eV (VIE)
3
E . INT1
2 OOCH,NO,
? OOCH,ONO
a HCHO +30, + NO
Isomer #1 Isomer #2 Isomer #3 Isomer #4 o
H(OK) = 23.55 kcal/mol H(OK) = 4.68 kcal/mol 0K) = 0.00 kcal/mol H(OK) = 48.95 kcal/mol 2z BCELONO
i‘: HONO, HNO; + HCO

/\\ aravan et al., Faraday Discuss.
) CRF‘ 200, 313-330(2017)
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(a) w/o scavenger

o e What about “real” radicals?

o(n=3) 435(n=4) |453(n=4) (b) w/ cyclohexane

o 1S S e T e
GO0 650 750 800

Suggestion that reactions of
Criegee intermediates with
alkylperoxy radicals can initiate

) oligomerization reactions (zhaoetal,
L l J‘ Physical Chemistry Chemical Physics 17:12500-14)

(c) w/ chlorocyclohexane

450 500 550 600 650
m'z

248 nm + °CH,l + CH,l, + O,
—-o-m/z33

Make CH;00 and CH,0O0 together

2 iz o (o001 Observe possible products but
only at dissociative ionization mass

Scaled Photoion Signal

Needs more investigation!
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