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Abstract—Over the last decade, hardware advances have
led to the feasibility of training and inference for very large
deep neural networks. Sparsified deep neural networks (DNNs)
can greatly reduce memory costs and increase throughput of
standard DNNs, if loss of accuracy can be controlled. The
IEEE HPEC Sparse Deep Neural Network Graph Challenge
serves as a testbed for algorithmic and implementation advances
to maximize computational performance of sparse deep neural
networks. We base our sparse network for DNNs, KK-SpDNN,
on the sparse linear algebra kernels within the Kokkos Kernels
library. Using the sparse matrix-matrix multiplication in Kokkos
Kernels allows us to reuse a highly optimized kernel. We focus on
reducing the single node and multi-node runtimes for 12 sparse
networks. We test KK-SpDNN on Intel Skylake and Knights
Landing architectures and see 120-500x improvement on single
node performance over the serial reference implementation.
We run in data-parallel mode with MPI to further speed up
network inference, ultimately obtaining an edge processing rate
of 1.16e+12 on 20 Skylake nodes. This translates to a 13x speed
up on 20 nodes compared to our highly optimized multithreaded
implementation on a single Skylake node.

Index Terms—sparse neural networks, sparse linear algebra,
performance portability

I. INTRODUCTION

Deep neural networks (DNNs) are currently state-of-the-art
in many domains including image classification [1], natural
language processing [2], [3], and speech recognition tasks [4]
DNNs can commonly have millions of network parameters and
require billions of operations to evaluate one sample. Pruning
of the network weights can reduce both storage requirements
and flop count. There exists a large body of work on creating
sparse networks from deep networks [5], [6] with the recent
primary application driver being machine learning deployment
for mobile devices. Recent focus has targeted sparse training
to accelerate deep network training [7], [8].

The IEEE HPEC Sparse Deep Neural Network Graph Chal-
lenge [9] is a competition to encourage improvements in sparse
DNN inference performance. Sparse inference itself has also
been a research focus in the context of DNNs [10], [11]. This
includes optimizing the sparse matrix-matrix kernels for DNNs
or carefully maintaining data sparsity, for example. Other
performance improvements are possible through exploiting
parallelism. In sparse inference, there are two main ways
to exploit parallelism for DNN training and inference: data-
and model-parallelism [12]-[14]. Data-parallelism exploits the

independence of samples for both training and inference. In
the context of sparse inference, input data can either be sparse
or dense as well. If the data is dense, rows are partitioned. If
the data is sparse, then ensuring that nonzeros are reasonably
distributed becomes essential. Model-parallelism may further
improve training performance once data-parallelism stagnates,
as accuracy with data-parallelism struggles to scale with large
training batch sizes [13]. The model-parallel inference task
uses distributed memory sparse matrix-matrix multiplication
as its core kernel [15], which relies heavily on MPI. Data-
parallelism for the inference task could sufficiently strong scale
to high node counts, as long as load balance is maintained.
With the ever growing popularity of mobile devices and the
Internet of Things, sparse inference and training will remain
an important task for researchers to optimize.

In this paper, we describe our approach to the Sparse Deep
Neural Network Graph Challenge and introduce a performance
portable Kokkos Kernels-based implementation of sparse deep
neural networks (KK-SpDNN). Experiments include both sin-
gle node and multi-node results on Intel Skylake and Knights
Landing (KNL) platforms. We obtain up to 500x improvement
over a serial reference implementation with a single Skylake
node. The data-parallel mode obtains up to a 13x improvement
on 20 Skylake nodes and a 7x improvement on 12 KNL
nodes compared to our highy optimized multithreaded imple-
mentation on a single Skylake/KNL node, respectively. We
also provide an analysis of performance per layer and multi-
node load balancing observations. We conclude with potential
pathways for future performance gains.

II. BACKGROUND

The sparse deep neural network graph challenge consists of
12 sparse deep neural networks of varying sizes and depth,
where size of the network is a fixed number of neurons per
layer and depth is the number of layers. In this challenge,
the number of neurons is either {1024, 4096, 16384, or
65536} and the number of layers is either {120, 480, or
1920}. Each layer in the network is a square matrix of
fixed size (Nneurons X Nneurons). The challenge networks are
produced using the sparse DNN generator, RadiX-Net [16],
which deterministically produces more diverse networks than
other sparse network generators, such as X-Net [17].
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For each layer, the network iteration is
Yip1 = oYWy + by), (D

where Y, € R(Nvectors XNneurons) is the image features at layer
¢, ¢(+) is an activation function, Wy € R®Nneurons X Nocurons)
is the layer ¢ network matrix, and b, € R(XNncurons) jg a
layer bias. After the layer’s matrix-matrix multiplication, by is
only applied to the nonzeros in the feature matrix. Next, the
network applies ¢(-), a modified ReLU activation function,

07 Yi S 07
d(yi) = qyi, 0<yi <32, 2

The sparse network input, Yy, is the MNIST corpus [18] that
contains 60,000 handwriting images at various resolutions.
The 16384 neuron network, for example, accepts images with
resolution 128 x 128 pixels (or 16384 total). Both the network
layers and images are provided in the sparse coordinate list
format, {row, column, value}.

Table I contains the number of nonzeros in each network,
the number of nonzeros in the MNIST images, and the layer
bias values. The largest test case, even though sparse, requires
over 16GB of storage.

TABLE I
THE NUMBER OF NONZEROS (EDGES) IN NETWORK AND IMAGE FOR EACH
NEURON-LAYER PAIR. BIAS APPLIED AFTER EACH LAYER.

Neurons Image
vs Layers 120 480 1920 Nonzeros || Bias
1024 3.93e6 | 1.57e7 | 6.29¢7 6.37e6 -.30
4096 1.57e7 | 6.29¢7 | 2.52e8 2.50e7 -35
16384 6.29¢7 | 2.52e8 | 1.01e9 9.89%¢7 -40
65536 2.52e8 | 1.01e9 | 4.03e9 3.92e8 -45

The goal of the sparse deep neural network graph challenge
is to achieve the best edge rate for the inference problem. The
network’s edge rate is

Nvec,orsNed es
Redge = #7 (3)
tinference
where Nyectors 18 the size of the MNIST corpus (i.e. 60k
images). It is important that approaches be transferrable to
real-world sparse data and networks, so exploits of the RadiX

network structure and MNIST data are forbidden.

III. APPROACH

Kokkos [19] is a C++ based programming model for writing
performance portable applications for all major architectures
and HPC platforms. It allows developers to abstract out both
parallel execution and data management, specifically for com-
plex heterogenous architectures. The Kokkos Kernels package
[20] is a suite of sparse/dense linear algebra and graph kernels
built on top of Kokkos. The sparse generalized matrix-matrix
multiplication (SpGEMM) kernel [21], [22] within Kokkos
Kernels is the backbone of KK-SpDNN.

Kokkos Kernels SpGEMM is designed to be a performance
portable implementation that can run well on CPUs, KNLs

Algorithm 1 Sparse neural network inference
KK_SPDNN(Nneuron37 Nlayersa Ttrim)

Read MNIST images Yo for Npeurons as CRS matrix.
Read network W, for Npeurons and Nigyers as CRS matrices.
Read truth categories § for Nypcurons and Nigyers as vector.
Build bias vectors by.
Begin challenge timer.
for £ € {0, , Niayers — 1} do

Zy = KK_SPGEMM(Y;, Wp).

Zy(i,:) = ¢(Ze(3,:) + be) (Add bias to Z, nonzeros).

if Nn,zs(YZ) — ans(ZIZ) > Tirim ;ans(Yé) then

Trim newly created zeros from Z,.

end if

Y1 = 2.
end for
End challenge timer.
Compare final rows of Y with §.

and GPUs. In order to be performance portable, the method is
designed to be a two-phase matrix-matrix multiplication. The
first phase computes the number of non-zeroes in the result
matrix so that the result matrix can be allocated. The second
phase actually computes the matrix-matrix multiplication. This
two phase approach is critical for portability so that one can
allocate the result matrix in an architecture like GPU where
dyamic allocations are inefficient. We utilize this portable two-
phase approach even though our target architectures in this
work are CPUs and KNLs. This allows reuse of optimized
SpGEMM between machine learning, scientific computing
and graph analysis use cases. This SpGEMM implementation
allows efficient load balancing of the computation and min-
imizes data movement using a compression operation. The
ability to use sparse hashmap based accumulators and dense
accumulators allows the implementation to choose the best
option for the given problem.

KK-SpGEMM accepts matrices in compressed row storage
(CRS) format through the Kokkos Kernels CRS_Matrix
class. To reduce reading time, we create binary files for all
layers, inputs, and truth categories prior to calculations. In
Algorithm 1, we present the KK-SpDNN algorithm. Here,
the operator NV,,.s(:) returns the number of nonzeros in the
given sparse matrix and 7., controls the frequency of zero
trimming.

Importantly, the bias and activation function in Algorithm 1
produce new zeros in Yy, and, if not managed, can lead
to dense linear algebra. We have implemented a Kokkos-
based trim kernel that removes all zeros and assembles a new
CRS matrix. The trimming process is expensive when it is
implemented outside the SpGEMM. As it requires reading
the matrix again into the memory hierarchy. To avoid this
expensive operation, we also implement a simple heuristic
to determine whether trimming is actually necessary. If the
difference in nonzeros between the previous and current it-
erations are above a relative threshold, then Zg is trimmed.
A good default is 7, = .01. As opposed to a fixed
trim-frequency, this choice would be most appropriate when
dealing with unknown sparse networks whose sparsity patterns
may or may not change greatly layer to layer. KK-SpDNN’s
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Fig. 1. KK-SpDNN data-parallel mode on 4 ranks. Network layers must be
replicated on each rank.

optimized trim kernel along with the trim policy is less than
4% of total runtime, as opposed to naive implementation which
can be 30-40% of total runtime. Further future optimizations
could include fusing the SpGEMM, bias/activation, and trim
kernels to minimize data access. But, given that the trim
and activation/bias kernels are inexpensive after using our
heuristic for reducing trimming frequency, the impact would
be low except near the strong scaling limit. We implement the
application of the bias and activation function using Kokkos,
as well.

We also add data-parallel mode to KK-SpDNN that allows
distributed-memory parallelism for increased edge rate. In the
data-parallel mode, the rows of Y} are evenly distributed across
different ranks before the challenge timer begins, see Figure 1,
and the network itself must be replicated across all ranks.

Data-parallelization leads to much higher edge rates, but can
also create load balancing issues which may prevent scalability
(see Figures 5-6 and discussion in Section IV). The rows may
be evenly distributed but nonzeros in the CRS format need not
be. Also, even if the nonzeros of Y, were perfectly balanced,
it does not ensure that they will remain balanced as Y; passes
through the network. Throughout the calculation certain rows
of Y, become relatively dense (see Figure 7 in Section IV). A
possible cheat for improved load balance and increased edge
rates would be to use the truth categories to partition rows
in Yy. We do not use this information. The RadiX networks
converge the Yy quickly, so the majority of the layers are acting
on the final solution. This would lead to near optimal static
load balancing, though this is directly prohibited by the Graph
Challenge rules. However, a dynamic load balancing scheme
that balances different layers could be implemented with a
balance policy, similar to the trimming policy. We plan to do
this optimization in the future.

I'V. NUMERICAL RESULTS

The numerical experiments were completed on the ASC Ad-
vanced Architectures test-bed at Sandia National Laboratories.
The specification of the two test-beds are in Table II

KK-SpDNN obtains the best performance using 1
rank per node with 32 and 128 OpenMP threads for
the Skylake and KNL nodes, respectively. On the

TABLE 11
NODE SPECIFICATIONS OF SANDIA NATIONAL LABORATORIES’® ASC
ADVANCED ARCHITECTURES TEST-BED.

Skylake machine KNL machine
(Blake) (Voltrino)
Intel Xeon Platinum 8160 Intel Xeon Phi 7250
Processor processors at 2.10GHz processors at 1.40GHz
Cores 24 cores per socket 68 cores per socket
Sockets two sockets one socket
Memory 196GB 99 GB
IMB L2 Cache IMB L2 Cache
Cache 34MB L3 Cache

Skylake machine, we use the openmpi/2.1.5 and
intel/19.1.144 compilers. For the KNL machine,
we use the mpich/7.7.4 and intel/18.0.5
compilers. We also set OMP_PROC_BIND=spread and
OMP_PLACES=threads for all cases.

We compare the performance of KK-SpDNN, the Graph
Challenge reference serial runtimes [9], and LAGraph [23].
The Graph Challenge reference provides both serial and data-
parallel runtimes. Data-parallel calculations are performed on
Intel KNL processors with 192GB of memory. LAGraph is
based on SuiteSparse: GraphBLAS V3.0.0 [24], [25] !. We
complete the LAGraph calculations on the same two testbeds
as KK-SpDNN to ensure fair comparisons. Though, LAGraph
is a single node code, so comparisons are not made against
KK-SpDNN’s multi-node data-parallel mode.

A. Single Node Results

In Table III, we compare performance on a single Sky-
lake node between KK-SpDNN, the Graph Challenge serial
reference implementation, and LAGraph. We report the best
results having tested over various numbers of OpenMP threads.
KK-SpDNN and LAGraph see a 300-500x improvement over
the serial reference implementation. This is a further 10-
15x improvement over the theoretical 32x improvement from
32 threads. Comparing LAGraph and KK-SpDNN, each has
domains where one dominates the other. LAGraph performs
well for the 65536 neuron cases, but KK-SpDNN dominates
the 4096 cases. Increasing the problem size, in either neuron
or layer count, increases the total work by 4. The KK-SpDNN
scales roughly linearly in both dimensions, with exception of
the 16384 neuron to 65536 neuron transition. This transition
required the switch from int to long to index the nonze-
ros, and so performance was impacted. Also, LAGraph uses
float, where as KK-SpDNN uses double, for scalar types.
We plan to do further KK-SpDNN experiments with float
scalar types in the future.

In Table IV, we have the same comparisons on a single
KNL node. Note, missing entries for the 65536 neuron cases
are due to excessive runtimes. For the KNLs, KK-SpDNN
obtains speedups of 35-340x over the Graph Challenge serial
reference implementation. Overall, Skylake nodes perform

'GraphBLAS V3.0.0 is not publicly available currently. We thank Timothy
Davis for sharing a pre-release version.



TABLE III
BEST RESULTS WITH OPENMP ON 1 SKYLAKE NODE IN SECONDS WITH

NTHREADS IN PARENTHESES. THE GRAPH CHALLENGE SERIAL
REFERENCE RUNTIMES ARE REPORTED IN [9]

Neurons, Graph Challenge | LAGraph KK-
Layers Serial Reference v3.0.0 SpDNN
1024, 120 6.26e2 (1) 2.12e0 (20) | 2.00e0 (32)
1024, 480 2.44e3 (1) 4.78e0 (20) | 7.94e0 (32)
1024, 1920 9.76e3 (1) 1.57e1 (20) | 2.76el (32)
4096, 120 2.45e3 (1) 1.06el (40) | 5.58e0 (32)
4096, 480 1.02e4 (1) 3.43el (40) | 2.03el (32)
4096, 1920 4.02¢e4 (1) 1.29¢2 (40) | 8.3%¢1 (32)
16384, 120 1.10e4 (1) 2.97el (32) | 2.95el (32)
16384, 480 4.53e4 (1) 1.08e2 (32) | 1.11e2 (32)
16384, 1920 1.79e5 (1) 3.88e2 (32) | 4.43e2 (32)
65536, 120 4.58e4 (1) 1.11e2 (32) | 3.85¢e2 (32)
65536, 480 2.02e5 (1) 3.75e2 (32) | 1.54e3 (32)
65536, 1920 — 1.82e3 (32) | 6.20e3 (32)
TABLE IV

BEST RESULTS WITH OPENMP ON 1 KNL NODE IN SECONDS WITH
NTHREADS IN PARENTHESES. THE GRAPH CHALLENGE SERIAL
REFERENCE RUNTIMES ARE REPORTED IN [9]

Neurons, Graph Challenge | LAGraph KK-
Layers Serial Reference v3.0.0 SpDNN
1024, 120 6.26e2 (1) 2.95e0 (68) | 2.20e0 (128)
1024, 480 2.44e3 (1) 7.26e0 (68) | 7.50e0 (128)
1024, 1920 9.76e3 (1) 2.53el (68) | 2.88el (128)
4096, 120 2.45e3 (1) 1.65e1 (68) | 1.08el (128)
4096, 480 1.02¢4 (1) 5.32¢l (68) | 3.98el (128)
4096, 1920 4.02¢e4 (1) 2.01e2 (68) | 1.59¢2 (128)
16384, 120 1.10e4 (1) 8.84el (68) | 8.07el (128)
16384, 480 4.53e4 (1) 3.15¢2 (68) | 3.12e2 (128)
16384, 1920 1.79¢5 (1) 1.24e3 (68) | 1.24e3 (128)
65536, 120 4.58e4 (1) 6.44¢2 (68) | 1.31e3 (128)
65536, 480 2.02e5 (1) — 5.42¢3 (128)

65536, 1920 — — —

equally well for smaller cases but is more performant at higher
neuron counts. We see the same linear scaling as problem
size increases in layer count, but the scaling for neuron count
is sublinear for both LAGraph and KK-SpDNN. Comparing
LAGraph and KK-SpDNN, KK-SpDNN is more dominant
overall on the KNL nodes.

B. Multi-node Results

The KK-SpDNN’s data-parallel mode greatly increases the
inference edge rate by dividing work amongst independently
running nodes. Parallel processing of feature vectors increases
throughput in all cases. Figure 2 and Table V contain a
strong scaling study on 24 Skylake nodes. The reference
implementation reports a maximum edge processing rate of
2.0ell in data-parallel mode on 600 KNL processors [9],
indicated by the redline in Figure 2. We use this best result
of the reference implementation to compare all our results. At
4 nodes, we have all test cases surpassing the reference rate.
Edge rates continue to scale up to 20 nodes with a maximum
edge rate of 1.16e12. After 20 nodes we see a decrease in
performance due to load imbalances. This is partially due

1e12

~—~ 2.00
—— Max R_Edge Ref(600proc)  «--- 16384N,480L
1.75 I 75 65536N,480L ——- 16384N,1920L
——- 65536N,1920L —— 16384N,120L
— 65536N,120L e 1024N,480L
1.50 4096N,480L —=- 1024N,1920L
~~- 4096N,1920L —— 1024N,120L
1.25 ~——— 4096N,120L

1.00

0.75

pp—— S T
ppnpeE———

Edge rate (features*edges/sec

Nodes

Fig. 2. Strong scaling study of KK data-parallel mode on Skylake nodes.
The best rate achieved by the data parallel reference implementation among
all the inputs (2.0el1) is shown as a single line. We achieve 1.16e12 rate
with 20 Skylake nodes.

to the fact we are using test bed machines, and partially
due to load balancing issues discussed in Section IV-C. In
the Graph Challenge reference implementation’s KNL scaling
study [9], the highest edge rates occur for the 1024 neuron
cases followed by the 4096 cases. For our experiments on
Skylake nodes, KK-SpDNN performs best for the 4096 neuron
cases then followed by the 16384 neuron cases.

Figure 3 and Table VI contain a strong scaling study on
16 KNL nodes. The 1024 neuron and 480 layer case achieves
the maximum KNL edge rate of 2.80el1 with 12 nodes. The
KNL scaling results achieve lower peak rates than Skylake
results. The 1024 neuron cases surpass the max reference
rate at 4 KNL nodes, but scaling stagnates at 12 nodes.
Stagnation occurs because the variance in runtimes can be up
to 40—60% around the mean at high node counts. For example,
the mean runtime across 12 nodes of the 1024 neuron and
1920 layer case is 9.2 seconds but the maximum runtime is
13.5 seconds and minimum 6.58 seconds. Similarly, the mean
runtime across 12 nodes of the 16384 neuron and 1920 layer
case is 292.7 seconds, but the maximum is 462.6 seconds and
minimum 174.4 seconds.

C. Load Imbalance

The individual kernel timings for each layer in the calcula-
tion are seen in Figure 4. The amount of work for each layer
quickly stabilizes around a periodic pattern, where Figure 4
is representative of all neuron and layer counts. Networks
with more layers maintain the same periodic pattern for all
additional layers in the network. Even though there is a
greater amount of work in the first few layers, the average
runtime time of the periodic pattern largely determines the
total runtime of the calculation. Once the layer runtimes has
converged to the periodic pattern, the sparsity of the Y, matrix
remains fixed. The trim heuristic is aptly suited for these deep
RadiX networks, because the sparsity pattern of Y, converges
quite quickly. If the sparsity pattern is unchanged, we may
save 90% of trimming time by skipping the trim kernel in
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TABLE V
SCALING STUDY OF KK-SPDNN WITH OPENMP ON SKYLAKE NODES IN SECONDS WITH NTHREADS = 32.
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Neurons, Maximum
Layers 2 Nodes 4 Nodes 8 Nodes 16 Nodes 20 Nodes 24 Nodes Edge Rate
1024, 120 1.32¢0 (32) | 1.12e0 (32) | 8.58e-1 (32) | 5.27e-1 (32) | 5.04e-1 (32) | 4.75e-1 (32) 491ell
1024, 480 5.22e0 (32) | 4.72e0 (32) | 3.29¢0 (32) 2.12e0 (32) 1.79¢0 (32) 1.77¢0 (32) 5.41lell
1024, 1920 1.81el (32) | 1.82el (32) | 1.21el (32) 9.43e0 (32) 8.65e0 (32) 8.00e0 (32) 4.72el1
4096, 120 4.38e0 (32) | 2.29¢0 (32) | 1.53e0 (32) 1.02¢0 (32) | 8.14e-1 (32) | 1.12e0 (32) *1.16e12*
4096, 480 1.64el (32) | 9.04e0 (32) | 5.84e0 (32) | 4.17e0 (32) | 3.42e0 (32) | 4.76e0 (32) 1.10e12
4096, 1920 6.29%¢1 (32) | 3.52el (32) | 2.39el (32) 1.77el (32) 1.47el1 (32) 1.87el (32) 1.03e12
16384, 120 2.27el (32) | 1.20el (32) | 8.14e0 (32) | 4.44e0 (32) | 4.34e0 (32) 5.56e0 (32) 8.69¢11
16384, 480 9.75el (32) | 4.77el (32) | 3.04el (32) 1.88el (32) 1.70el1 (32) 2.28el (32) 8.8%11
16384,1920 || 3.89¢2 (32) | 1.92e2 (32) | 1.22e2 (32) 8.36el (32) | 7.51el (32) 9.61el (32) 8.05¢el1
65536, 120 1.44e2 (32) | 8.15¢el (32) | 4.36el (32) 3.07el (32) | 2.89el (32) | 2.90el (32) 5.31ell
65536, 480 5.89¢2 (32) | 3.22e2 (32) | 1.85e2 (32) 1.24¢2 (32) 1.21e2 (32) 1.22¢2 (32) 5.00el1
65536,1920 || 2.54e3 (32) | 1.40e3 (32) | 8.43e2 (32) 6.59¢2 (32) | 5.28e2 (32) 5.48e2 (32) 4.58ell
TABLE VI
SCALING STUDY OF KK-SPDNN WITH OPENMP ON KNL NODES IN SECONDS WITH NTHREADS = 128.
Neurons, Maximum
Layers 2 Nodes 4 Nodes 8 Nodes 12 Nodes 16 Nodes Edge Rate
1024, 120 1.50e0 (128) | 1.06e0 (128) | 9.49e-1 (128) | 8.54e-1 (128) | 9.44e-1 (128) 2.76el1
1024, 480 5.32e0 (128) | 3.93e0 (128) | 3.73e0 (128) | 3.37e0 (128) 3.81e0 (128) 2.80el1
1024, 1920 2.10el (128) | 1.54el (128) | 1.47el (128) 1.35el (128) 1.55el (128) 2.80el1
4096, 120 7.37¢0 (128) | 5.28e0 (128) | 6.17e0 (128) | 4.45e0 (128) | 4.56e0 (128) 2.12el1
4096, 480 2.75el (128) | 2.06el (128) | 2.48el (128) 1.75e1 (128) 1.81el (128) 2.16el1
4096, 1920 1.11e2 (128) | 8.21el (128) | 9.95el (128) 7.00el (128) 7.26el (128) 2.16el1
16384, 120 7.00el (128) | 4.02el (128) | 3.56el (128) 2.98el (128) 3.20el (128) 1.27el1
16384, 480 2.62e2 (128) | 1.50e2 (128) | 1.38e2 (128) 1.18e2 (128) 1.30e2 (128) 1.28el1
16384,1920 || 9.48e2 (128) | 6.00e2 (128) | 5.34e2 (128) | 4.63e2 (128) 5.15e2 (128) 1.31el1
65536, 120 7.38e2 (128) | 3.93e2 (128) | 2.45e2 (128) 1.94e2 (128) 1.66€2 (128) 9.11el0
65536, 480 3.07e3 (128) | 1.61e3 (128) | 1.00e3 (128) 8.10e2 (128) 7.06e2 (128) 8.58e10
65536,1920 || 1.22e¢4 (128) | 6.37e3 (128) | 3.95e3 (128) 3.24e3 (128) 2.87e3 (128) 8.43e10
6
—— Max R_Edge Ref(600proc)  ----- 16384N,480L B trim
----- 65536N,480L —=—= 16384N,1920L s spgemm

B bias/activ

80 100

Fig. 3. Strong scaling study of KK data-parallel mode on KNL nodes. The
best rate achieved by the data parallel reference implementation among all
the inputs (2.0el1) is shown as a single line.

Algorithm 1. Consequently, the vast majority of total runtime
is spent in the SpPGEMM kernel.
Figures 5 and 6 contain the runtime max/mins and quartiles

for all node counts in the 16384 neuron and 1920 layer
calculation on both Skylake and KNL machines. The 24

Fig. 4. Timings for each kernel per layer in KK-SpDNN for the 1 Skylake
node, 16384 neuron, 120 layer case.

Skylake and 16 KNL node cases, for example, experience
a pronounced straggler effect. Parallel runtimes are limited
by the slowest rank, so one poorly imbalanced rank can hurt
parallel scaling. Also, the runtime variation between ranks
in the same calculation is near 50 and 300 seconds for the
Skylake and KNL experiments, respectively. This is over 50%
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Fig. 6. Load imbalance for KK-SpDNN on KNL nodes, 16384 neuron, 1920
layer case.

of the total runtime at these node counts, so further scaling will
likely see greatly decreased benefit. A histogram of the load
imbalance from an example final solution is seen in Figure 7,
where the maximum load is roughly 2x the average load. Each
bar represents a node in the multi-node calculation, where
the frequency is the number of dense rows that appear in
the converged solution. Because, the solution converges so
quickly for the RadiX networks, Figure 7 shows the load for
the majority of the calculation.

The largest gains, other than optimizing SpGEMM for
sparse inference, will most likely come from judicious dy-
namic load balancing. A static partitioning can not be op-
timally chosen without a priori knowledge of the solution’s
load imbalance. The simple approach of partitioning just Y,
(i.e. balance nonzeros between ranks) is insufficient for these
networks. The networks quickly change load within the first
few layers. Furthermore, the nonzeros of Y, are already fairly
balanced with less than 10% variation between ranks for the
node counts tested. A dynamic load balancing algorithm would
alleviate the load imbalance issue while also being applicable
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Fig. 7. Load imbalance of the truth categories on 24 nodes, 16384 neurons
and 1920 layer case. The x-axis has the rows binned into 24 bins. The y-axis
is the number of dense rows in each bin, or each node’s load.

to real world networks. As long as the migration costs are
low and migrations infrequent, dynamic load balancing may
greatly reduce overall runtime and improve scalability.

V. CONCLUSIONS AND FUTURE WORK

The KokkosKernels-based sparse deep neural network for
both single- and multi-node calculations has greatly improved
edge rate for all 12 test cases over the reference runtimes.
The maximum edge rate is 1.16e+12, which is achieved for
the 4096 neuron and 120 layer case on 20 Skylake nodes. We
have proposed a heuristic to optimally trim the CRS matrix, Y7,
of zeros created by the activation function. This optimization
reduces trim kernel time from 30% to less than 4%. Greater
than 95% of runtime is attributed to the SpGEMM kernel.

We have demonstrated the clear benefit of data-parallelism
through increased edge rates, though scaling to higher node
counts shows diminishing returns. Changes in load balance
during the calculation results in worse performance at higher
node counts, but we have proposed plausible pathways to
further improve the KK-SpDNN implementation. We see
dynamic load balancing as the clearest source of poten-
tial improvement. Other potential improvements may include
inference-optimized SpGEMM GPU kernels. The largest cases
would need to make use of CUDA streams due to GPU
memory limitations. Moreover, reduced or mixed-precision
arithmetic may accelerate the SpGEMM kernels, translating
directly to reduced total runtime. The loss of representative
bits from reduced precision is unlikely to affect accuracy for
this challenge, because the final goal is identifying the correct
sparsity pattern.
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