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2 Motivation

Sandia's applications are primarily focused on
high energy density regimes where plasmas
interact with material structures.

Collisional process in the high-energy density
(HED) regime are dependent on both charged
and neutral interactions.

. Understanding energy deposition and heating
processes requires high-fidelity representations of
kinetic plasma effects.

Existing strategies attempt to resolve physics
using particle-based sampling schemes.

. Highly collisional systems (e.g. dense plasmas or
background neutral gas) lead to slow collisional
evaluations.

Goal: Use a fluid to accelerate a particle
scheme in regimes dominated by collisional
transport.
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3 Collisional Processes in Plasmas

Collisional transport in plasmas is strongly dependent on temperature, density, and
background material properties (e.g. neutral gas).
o There are three main regimes for model development in plasma physics:

Inviscid Collisional Transition Regime Collisionless

MHD/Multi-Fluid PIC-DSMC/Boltzmann PIC/Vlasov

Knudsen Number — T2/n  >
The rule of thumb is:
o Fluid models: Fast and accurate, but misses important physics.

o Kinetic (particle) models: Slow and noisy, but include missing physics.

Magnetization plays a large role in collisional transport, as the magnetic field reduces
collisional mean free paths in directions orthogonal to the field. Hall Parameter H is
the ratio of collisional time scales to cyclotron time scales
o Fluid approach: Braginskii closures — limited to highly collisional regime with moderate
magnetic fields (H < 1)

o Kinetic approach: Gyrokinetic models — valid for strongly magnetized systems (H >> 1)



Kinetic Plasmas — Boltzmann Model

Kinetic models for plasmas attempt to represent the full phase space form for the
particle distribution.

0 The full Boltzmann model evolves a phase space distribution fa for a species a through
advective, electromagnetic, and collisional effects.

L[fa] = atfa + vx •(v fa) + V, • (—qa (E v X B) fa)
ma

The electromagnetics are represented by Maxwell's equations.

atE — C2 V X B = — 1 lqa f V fa d3v
Eo a

(atfa)col

atB -FVXE=0
6D model —> Extremely large scale simulation if discretized on 6D mesh.

Particle-in-cell (PIC): Sample the distribution in velocity space and evolve samples in time.



Kinetics via Particle-In-Cell (PIC)

PIC approximates 6D Vlasov/Boltzmann by sampling velocity space

. Highly magnetized/dense plasmas require 100's or 1000's of particles per cell.

. Each particle update uses the simplified equations of motion:

L[fcc] = atfa + Vx • 0,fa)+ Vv • 
act( (E-Fi, ><B)fa —,)
ma tVpa

atx3a = v )(3

qa (
= E + il, X B)
ma

Maxwell's Equations are solved on a mesh:

. Issue of projecting particle data onto unstructured mesh, and mesh data onto particles.

. Divergence errors in magnetic fields cause issues with PIC.

Direct-Simulation Monte-Carlo (DSMC) collides particles to model thermalization

. High-density regimes require many stochastic collisions.

. Collisions can generate new particles (problem size grows over time).

Our discretization uses a Dirac-delta distribution shaping function in both physical
and velocity space for each sample.

. Leads to noise and Debye heating.

. Moments of particles are very noisy (needs 1000s of particles per cell)



Reducing Kinetic to Fluid Representation

Fluid models are derived by taking moments of the Boltzmann model and making
assumptions about how to close the system.

O Limiting the phase space distribution to a Maxwell-Boltzmann distribution leads to a
complete set of five moments:

00
(gO,))a = ma f g(v) d3v —)

00

Pa = (fa(1)))a Mass Density

Pa = (12 fa (V))a Momentum Density

1
= Or- fa (1)))a Total Isotropic Energy Density

. Moments of the Boltzmann model give the Euler fluid equations:

(L[fal)a = (Ca)a Continuity Equation

(v.afal)a= (vCa)a Momentum Equation

1
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System is closed assuming the distribution fa remains in local thermal equilibrium.
o Deviations from equilibrium treated using viscous closure (Navier-Stokes, Braginskii, etc.)



Euler Fluid: Moments of Boltzmann Model

Fluids are linked to kinetics through the anisotropic pressure H and heat flux q,
electromagnetics, and collisions:

O Continuity Equation: atp+V•p=0

o Momentum Equation: atp + V • (u 0 p + PI + H) = qn(E + u x B) + R

O Energy Equation: atE -Ey • (u(E + P)+u•H+q)=qnu•E+u•R+Q

Model is discretized using a discontinuous Galerkin (DG) representation:

o Strong Form: atu + V • f = s, u E {p, p, E}

Discontinuous Basis: ctiii( in element K E 11

o Weak Form: 4( gatu dV + ‘ctiii( It • f dS — fi< f • Vg dV = fx Ors dV

Scheme is chosen due to its nice computational properties:

o Arbitrary order of accuracy.

o Can be embedded easily into fast/scalable implicit-explicit time integration schemes.

o Supports various stabilization methods.

Discretization relies on consistency condition on the normal flux on the surface of

each cell to be globally conservative.



8 Exact Sequence Discretization for EM

A compatible finite element discretization is used to enforce the divergence
constraints for the electric and magnetic fields.
• Fluids are represented by an HGrad (node) basis p E Vv.

O The electric field is represented by an HCurl (edge) vector basis E E Vvx.

o The magnetic field is represented by an HDiv (face) vector basis B E Vv..

Formulation supports the discrete preservation of the De Rham Complex.
• In this case, the discretization supports the divergence involutions for Gauss' laws:

ati3 +VxE= 0 Strongly Enforces:
1

atE — C2v B = —
E0

Weakly Enforces:

My • B) = o

at(Eov • E — Pc) 0

This has been shown to work for continuous discretizations [1] and PIC, currently
working to extend its validity to discontinuous fluid discretizations.

[1] S. T. Miller, et al. IMEX and exact sequence discretkation of the multquid plasma model. JCP 2019



Hybrid Kinetic Modeling by Species

Low temperature, high density species are
represented by a fluid.
• Closures (collisional coupling) are either inviscid,
Navier-Stokes, or Braginskii.

High temperature, low density species are
represented using PIC.
• Direct-simulation Monte-Carlo (DSMC) is used to
represent collisions if required.

The main challenge with this approach is that there
is a limited application regime where this is
accurate.
• Fluid will generate incorrect wave speeds for

collisional/electrostatic/acoustic processes.

• Currents associated with the fluid can have a dramatic
influence on electromagnetics when the fluid is outside
its validity regime.

Inherent problem: Fluids
potentially ignore much of

the distribution.
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Hybrid Kinetic Modeling by Component

6f models mix fluid and kinetic representations
to reduce computational cost associated with the
kinetic representation for dense plasma regimes.

The model is based on assuming the phase
space distribution f is represented by a
Maxwell-Boltzmann distribution fm and a
deviation 6 f= f - fm such that

L[f] = C -> L[611 = -L[fm] + C = S

O L[S f] is modeled with a kinetic representation.

O L[fm] is modeled with a fluid representation.

To keep this scheme consistent, we have to
couple the kinetic model to the fluid evolution.
. For PIC this means generating deviatoric particles.
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The 151. component feeds the
missing kinetic component back

into the model.
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Kinetic Representation for 6 f Model

The Maxwell-Boltzmann distribution is defined by the number density n, flow
velocity u, and standard deviation a = T/m as

3

(  1  y ( 1 (1, — u)2)
fm = 12

2 7 o-2 
exp

2 62

Which means that the chain rule can be used to define the kinetic source using the
fluid mass density p, momentum p, and energy E

S = —apfm(atp + v • Vp) — Vpfm • Oa] + v • vp)

— a E fm(a tE + 1, • vE) — a • V vfm + C

o atio,atp,atE,vp,vp, and VE: taken from the fluid representation.
o apfm, Vp fm, (Wm, and Vvfm: have analytic solutions.

Challenges:
o How do we generate particles to represent this source?

o How many particles do we need to add?

. What is the impact of negative weight particles on electromagnetics?

•



Time Integration

Time integration for hybrid models is challenging and not well understood.
o PIC: Simplectic time integrators or L-stable implicit integrators.

o Fluid: Dissipative (SSP) Runge-Kutta (RK) explicit integrators and SSPRK-IMEX

o Maxwell: Linear equation set - supports everything.

To retain stability in the fluid solve, the initial implementation merges a leap-frog
integrator with a 3rd order SSP-RK method:

Begin Time Step

PIC: e, 1271-112
Fluid: pn, pn , En

Field: En , Bn

*
Accelerate Particles

V —) Vn-1/2 n+1/2

Using: En , Bn

*
Move Particles

xn _) xn+i

: .0+1/2Using

Update Fluid/Fields

pn, pn, En, En , Bn _) pn+1,pn+1, En+1, En+1, Bn+1

.n+1 /2
Using: .1 PIC

Challenges:
o Can we get greater than first order time convergence?

o How does dissipation in field integrator affect particles?

•
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Full PIC vs Hybrid (Neutral)

The simplest test for the df particle source is a direct comparison with Full PIC for
a continuous solution where the gradients are well defined for the fluid.

Constant pressure with sine wave in density —> temperature gradient.
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Source at x =
W3Y;

Source along vx at x = 0
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This is a static solution for a inviscid fluid, however, the kinetic solution evolves to
where the density is constant.



Hybrid Closure - Good AgreementWith PIC

Tested against number of particles added to a
cell per time step (Np).

Full PIC simulation initialized with 100k
particles per cell.

Sf particles are placed every At = 0.01.

Good agreement seen between full PIC
simulation and high particle count 6f
simulation.

Lower particle count 6f simulation is seen to
predict the wrong mass and energy, and is
very noisy.

Results can be cleaned up with a better
particle placement strategy.
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Dynamic Fluids Also Show Good Agreement

A shock tube simulation is more challenging as the
fluid evolves and must remain consistent with the
analytic solution.

0 Example adds at most 1000 particles to each of 200 cells
at 120 equally spaced times ending at 0.1.

Particles are only added if their weight is sufficient.

The main challenge with shock physics is resolving
the steep gradients that feed into the particle source.

fm

bf with Np= 102

5f with Np =103

Sf with Np = 104

f= f, + 5f with Np = 104

--- Analytic Solution

1.5

0.0

-0.50 -0.25

•

Sod Shock Tube: Good agreement
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shock interfaces.
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Full PIC vs Hybrid (Electromagnetic)

Electromagnetic simulation uses same initialization as
neutral wave, however now with imposed magnetic
component.

• Single positron species.

o Speed of sound set to vs = 0.1c.

o Density is chosen to have 20 Debye lengths in the
domain to reduce Debye heating.

o Magnetic coupling length scales are chosen to be similar
to Debye length: (Dp = 2coc.

PIC initialized with 40 million particles.

o Overkill, but needed to reduce noise in moments.

Delta F initialized with 0 particles, but particles are
added over time.

• As few as 5 particles per time step per cell give accurate
electromagnetic response.

Goal: Problem is designed to see full electromagnetic
and electrostatic response of the Delta F model in
comparison to pure fluid and PIC.
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Electromagnetic Hybrid Shows Good Agreement

Electromagnetic response, Ey, shows little
difference between pure fluid, PIC, and the
hybrid closure.

Electrostatic response Ex deviates between
fluid and PIC due to the thermal response of
the inviscid fluid.
The hybrid closure scheme brings these effects
back into the model to give a consistent electric
response.

o Two particle counts per time step are shown,
results show minor deviations between them
associated with noise.

Result: The choice of using a species
separated hybrid, or hybrid closure scheme is
strongly tied to the physical behavior of
interest.
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Electromagnetic Hybrid Moments Show Impact of Delta F

The impact of the closure is more easily seen
when viewing the moments.

• Example: Delta F has 10 particles added per cell
per time step.

Momentum along the acoustic direction is seen
to deviate from the particle response by a large
factor.
o The hybrid closure acts to represent the missing
current, however magnitude of PIC moments can
exceed fluid components.

o Due to field effects, the fluid component of Delta
F does not agree with the fluid-only simulation.

Result: To reduce particle counts we must
couple the PIC moments back into the fluid.
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I Summary

Neutral (51. compares well to full kinetic solution for:
. Static, well-resolved fluid.

. Shock based fluid evolution.

Electromagnetic 6f compares well to full kinetic solution over pure fluid solution.

Choice of sampling scheme for particle source is important.

Stable evolution of discontinuous Galerkin fluid using exact sequence discretized
electromagnetics was shown.

. Noise from PIC did not affect fluid stability for smooth problems.



The Next Steps

The main pieces missing include feedback and collisions:

atp + • p = 0

atp -Fv•(u0p+PI+II)Thq7n(pE+pxB)+R

atE + v • (u(E + P) +u•II+q)= qTrip•E+u•R+Q

S= —öpfin(atp + v • v P) — Vpfin • (aa) + v • VP)
—aEfm(atE + v • vo — a • Vv fin + c

Optimization of the algorithm is needed:

Particle merge algorithm to reduce the number of particles in a simulation.

Automated/adaptive control of how many particles are added per cell.

Additionally, we are looking into IMEX time integration to step over plasma
frequency, cyclotron frequency, and fluid time scales.


