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1
2 Thermal runaway and cascading failure

Validated reliability and safety is one of
four critical challenges identified in 2013
Grid Energy Storage Strategic Plan

o Failure rates as low as 1 in several million

o Potentially many cells used in energy
storage

o Moderate likelihood of 'something'
going wrong

Increased energy densities and other
material advances lead to more reactive
systems

A single cell failure that propagates through
the pack can have an impact even with low
individual failure rates.

How do we decrease the risk?

Single Cell

—0.5-5 Ah

Strings and large

format cells

—10-200 Ah

EV Battery Pack 100s-

1000s cells

10-50 kWh

www.nissan.com 
www.i nte rnational battery.com

www.samsung.com 
www.saft.com

Stationary storage

system 1000s or more

individual cells

MW1-1+
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3 Approaches to designing in safety

The current approach is to test our way into safety
o Large system (>1MWh) testing is difficult and costly.

Supplement testing with predictions of challenging scenarios and
optimization of mitigation.

o Develop multi-physics models to predict failure mechanisms and identify
mitigation.

O Build capabilities with small/medium scale measurements.

o Still requires some testing and validation.
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4 Cascading failure testing with passive mitigation

LiCo02 3Ah pouch cells

5 closely packed cells with/without
aluminum or copper spacer plates

Spacer thicknesses between 1/32" and
1/8"

o State of charge between 50% and 100%

Failure initiated by a mechanical nail
penetration in the outer cell (cell 1)

Thermocouples (TC) between cells and
spacers (if present)
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I5 Cascading failure testing
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Cascading failure: propagation speeds

Adding spacers increases space crossing time, but decreases cell crossing time

Increasing state of charge (SOC) decreases both space and cell crossing time

Interplay between heat capacity of system and energy release
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100% SOC 1-32-Cu

—A— 100% SOC 1-32-Al

-•- 80% SOC

-•- 80% SOC

3
Cell Number

4

80

70-

60-

E 5°-
1=
cs,
40-_

Lnu)
o
(.) 30

20-

10-

1

—0— 100% SOC

—A-- 100% SOC 1-32-Cu

—A— 100% SOC 1-32-Al

-•- 80% SOC

-•- 80% SOC

2 3

Space/Plate Number



7 Anode-electrolyte calorimetry and modeling
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Anode-electrolyte calorimetry suggest several regimes during thermal runaway

o Initiation — Plateau -Runaway

Anode-electrolyte reactions generate heat

o Could raise cell temperatures — 650° C

. Nominal reaction:

2L i C6 + C3114 03 ---> 2 C6 + L i2 CO3 + C2H4
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8 More predictions with the comprehensive model

Predicting the full range of behavior over a range of particle sizes
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9 I Many predictions with the comprehensive model
24 x DSC, 5 x ARC
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10 1 A comprehensive model for anode-electrolyte runaway

Edge Area Limiting
Electron-Tunneling

Effect Electrolyte
Limiter

dt mE)
A2exp (— —

RT
) exp(—zt)

dxi ae mE E2

Barrier Variable Area Critical Allows AccelerationGrowth Effect. Barrier, ,

= — 
dt nt 

for zt < Zcrit , and = 0 otherwise
dt

1

, ,
dzt dxi Ct i i 1 dzt

(aBET dt)
a()

CU]. AllrxnQ [w 1 g] _  _ 
dt W 

__ _ _ a_
Heat Release with new Al-Irxr,
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ii Finite element model for full cells in thermal runaway

Discretization in one direction (x)

Modeled as a quasi 1 -D domain of
thin hexahedron elements

Multi-layered system
O Lumped battery material

o Spacers

o End block insulators

Convective heat transfer to
surroundings (scaled by surface area to
volume ratio for thin domain)

Heat conduction with chemical
sources inside battery material

4sides

x->,,,,........-- -- --

4 e n d <-

1 1
Battery Spacer



12 Finite element model equations

Energy conservation:
aT

pcp Tt = v • (KVT) + er
ass conservation for species i with iv, reactions:

Nr

api ; '= (-v; — v i j)r jat J=1
Energy source:



I 3 I Chemical source terms for thermal runaway

Preliminary chemistry model from
literature
o Based on Dahn group (1999-2001)
o Derived from calorimetry
o Good onset predictions
o Under-predicts peak temperature

Empirical chemical reactions:
o SEI decomposition (Richard 1999)

(CH20CO2L02 —> Li2CO3 + gas

• Anode-electrolyte (Shurtz 2018)

2C6Li + C3H403 —> 2C6 + Li2CO3 + gas

o Cathode-electrolyte (Hatchard 2001)

2 1
Co02 + 

15 
C3H403 —> 3 Co304 + gas

o Short-circuit

C6Li + Co02 —> C6 + LiCOO2

Hatchard, T. D., D. D. MacNeil, A. Basu and J. R. Dahn (2001). Journal of the Electrochemical Society 148(7): A755-A761.
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14 Simulation results: 100% SOC, no spacers
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15  Simulation results: 80% SOC, no spacers
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16 Simulation results: 100% SOC, 1/32" aluminum spacers
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17  Simulation results: 100% SOC, 1/32" copper spacers
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is Simulation results: 100% SOC, I / I 6" copper spacers
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19 Heat capacity and SOC: limits of propagation

State of Charge Experiment Simulation

100% SOC Propagation Propagation

90% SOC N/A Propagation

80% SOC Propagation No Propagation

75% SOC No Propagation No Propagation

ffective Heat Capacity Simulation

778 J/kg/K (no spacers) Propagation Propagation

893 J/kg/K (1/32" Al) Propagation Propagation

941 J/kg/K (1/32" Cu) Propagation No Propagation

1009 J/kg/K (1/16" Al) No Propagation (Cell 2 Failure) No Propagation

l I 03 J/kg/K (1/16" Cu) No Propagation (Cell 2 Failure) No Propagation



20 Summary

Finite element model with chemical source terms tested against experimental data
. Captures trends at 100% SOC, over-predicts propagation velocity

. Model is under-conservative with predictions when heat capacity is increased and SOC is
decreased

There is a need for validated chemical source models tested at higher heat release
rates

Ongoing work to improve mechanistic understanding of thermal and chemical time
scales
. Comprehensive cathode models

. Transport limited reaction kinetics
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