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Thermal runaway and cascading failure

Single Cell

Validated reliability and safety 1s one of ~0.5.5 Ah
four critical challenges identified in 2013 \
Grid Energy Storage Strategic Plan

Strings and large

o Failure rates as low as 1 in several million format cells
~10-200 Ah

° Potentially many cells used in energy

storage &j EV Battery Pack 100s- |_d
. . p -, 1000s cells
> Moderate likelihood of ‘something o —

going wrong

Stationary storage
system 1000s or more

Increased energy densities and other individual cells
material advances lead to more reactive MWh+
systems

A single cell failure that propagates through
the pack can have an impact even with low
individual failure rates.

How do we decrease the risk?

WWW.hissan.com
www.internationalbattery.com
WWWw.samsung.com
www.saft.com




Approaches to designing in safety

The current approach is to test our way into safety
° Large system (>1MWh) testing 1s difficult and costly.

Supplement testing with predictions of challenging scenarios and
optimization of mitigation.
°> Develop multi-physics models to predict failure mechanisms and identify
mitigation.
° Build capabilities with small/medium scale measurements.

o Still requires some testing and validation.
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+ | Cascading failure testing with passive mitigation

LiCoO, 3Ah pouch cells

5 closely packed cells with /without
aluminum or coppet spacer plates

o Spacer thicknesses between 1/32” and
1/8”

o State of charge between 50% and 100%

Failure initiated by a mechanical nail
penetration in the outer cell (cell 1)

Thermocouples (TC) between cells and
spacers (if present)
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s | Cascading failure testing
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Cascading failure: propagation speeds

Adding spacers increases space crossing time, but decreases cell crossing time

Increasing state of charge (SOC) decreases both space and cell crossing time

Interplay between heat capacity of system and energy release
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Heat Flow (W/g Anode)

Anode-electrolyte calorimetry and modeling

Anode-electrolyte calorimetry suggest several regimes during thermal runaway

o Initiation — Plateau -Runaway

Anode-electrolyte reactions generate heat
o Could raise cell temperatures ~ 650°C

o> Nominal reaction:

2LiC + C3H,05 — 2Cg + Li,CO3 + CoH,

5

Electron- Anode
4 | Tunneling thermal
/'g( runaway
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More predictions with the comprehensive model

Predicting the full range of behavior over a range of particle sizes

Heat Flow (W/g Anode)
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Heating Rate (°C/min)

Heat Flow (W/g)

Many predictions with the comprehensive model

24 x DSC

Shown earlier

, 5 x ARC

Detailed area
measurements
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o I A comprehensive model for anode-electrolyte runaway

Edge Area Limiting

Electron-Tunneling
Effect Electrolyte

T 1 Limitier
( 1 ‘ l \
dx; a, mg P ( EZ) (—2.)
—— = X; exp | ——==)exp(—z
dt Yag (msg + mg) ™ ° P\™gr) P\ %
Barrier i -
Crovwih var';;fcfrea CB:r't'Fal Allows Acceleration
A ; g ‘ ar‘rler ( A \
dZt dxl' Ct : : : d Zt 0 h _
—_—= - or zy < Zqpj+ ,and — = otherwise
dt dt (agpr\™ Lo enity dt
Ao
dx; AH
QW/g] = - dtl M;xn + Heat Release with new 4H,,,
a



Finite element model for full cells in thermal runaway

Discretization in one direction (x)

Modeled as a quasi 1-D domain of
thin hexahedron elements

Multi-layered system
> Lumped battery material
° Spacers

o End block insulators

c.Iend :

Convective heat transfer to
surroundings (scaled by surface area to
volume ratio for thin domain)

Heat conduction with chemical
sources inside battery material

éIsides

x—>/

/

I
Battery

Spacer

c.Iend



2 | Finite element model equations

Energy conservation:

aT o 177
pcpa—:V-(KVT)+q

Mass conservation for SpGCICS [ with N reactions:

apl z(" — Vi),

Ny
= Z AH;;
=1

Energy source:




3 I Chemical source terms for thermal runaway

Preliminary chemistry model from
literature

°Based on Dahn group (1999-2001)
°Dertved from calorimetry

> Good onset predictions

> Under-predicts peak temperature

Empirical chemical reactions:
°SEI decomposition (Richard 1999)
(CH,0CO0,Li), — Li,CO5 + gas
> Anode-electrolyte (Shurtz 2018)
2CcLi + C3H,03 — 2C + Li,CO3 + gas
° Cathode-electrolyte (Hatchard 2001)

2 1
COOZ + EC3H403 - §C0304 + gas

o Short-circuit
C6Ll + COOZ — C6 + LlCOOz
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i+ | Simulation results: 100% SOC, no
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> Prediction of peak temperatures and cooling

> Cell crossing speed over-predicted
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s I Simulation results: 80% SOC, no spacers
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> Insufficient heat generation to initiate thermal runaway outside of the nail
penetration region

o Experimental peak temperatures lower than 100% SOC




6 I Simulation results: 100% SOC, [/32” aluminum spacers
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> Temperature difference in TCs on either side of the plates under-
predicted

o Cell crossing speed still over-predicted

I
P1 P2 P3 P4 I



7 1 Simulation results: 100% SOC, 1/32” copper spacers
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Simulation results: 100% SOC, |/16” copper spacers
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> No propagation in simulations and experiments
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Heat capacity and SOC: limits of propagation

100% SOC Propagation Propagation
90% SOC N/A Propagation
80% SOC Propagation No Propagation
75% SOC No Propagation No Propagation
e e
778 J/kg/K (no spacers) Propagation Propagation
893 J/kg/K (1/32” Al) Propagation Propagation
941 J/kg/K (1/32” Cu) Propagation No Propagation
1009 J/kg/K (1/16” Al) No Propagation (Cell 2 Failure) No Propagation

1103 J/kg/K (1/16” Cu) No Propagation (Cell 2 Failure) No Propagation
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Summary

Finite element model with chemical source terms tested against experimental data
o Captures trends at 100% SOC, over-predicts propagation velocity

> Model is under-conservative with predictions when heat capacity is increased and SOC is
decreased

There is a need for validated chemical source models tested at higher heat release
rates

Ongoing work to improve mechanistic understanding of thermal and chemical time
scales

> Comprehensive cathode models

° Transport limited reaction kinetics
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