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'Need for Liquid-Solid Interfacial
Characterization for Li Ion Batteries
Lithium metal electrodes present a 10x increase in energy storage
capacity, if the lithium metal can be electrodeposited and removed
without the formation of filament structures which cause internal
shorts. Many variables impact the electrodeposited Li metal
morphology, including temperature, environment, pressure,
current density, initial surface roughness, electrolyte, and
electrolyte additives.1 In this work, we have found that contact
pressure on the electrodes greatly changes the Li metal
morphology. Cryogenic scanning electron microscopy (cryo-SEM)
and focused ion beam (cryo-FIB) are necessary to preserve the
electron beam sensitive structures. Future implementation of cryo
lift-outs for transmission electron microscopy (TEM) and
chemical analysis is planned for mapping solid-liquid interfaces.
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In-situ electrochemical STEM observed Li grain morphology that was
uncharacteristic from what was observed in bulk geometries in identical
electrolytes with the same current collector materia1.2,3 It was determined
that the lack of surface compression during the in-situ STEM results was
the critical factor for the changes in Li cycling performance and Li
morphology, which was proven in bulk electrodes with and without
surface compression. Coulombic efficiency greatly improved with
compression and a dense filament-free Li layer was observed.3

CINT's Cryo-EM Suite

The Center for Integrated Nanotechnologies (CINT) is a DOE-
Basic Energy Sciences national user facility to provide expertise
and instrumentation free of charge to support accepted peer-
reviewed nanoscience research. Access to instrumentation is
provided upon acceptance of a 2-page proposal. September 30th,
2019 is the deadline for user proposal submissions for 18-month
projects on our website: cint.lanl.gov.
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Contact pressure on the surface of the Li electrode will impact the
cycling performance and the electrodeposited Li morphology.4
Constant pressure was applied using load frames on pouch cells.

Copper foils were
loaded vs. 50 lam
Li metal on copper
with Celguard
separators in
between. Extra
space in the pouch
allowed excess
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compression.
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Scanning electron micrographs of the electrodeposited Li metal working
electrode surface after removal from a pressure controlled pouch cell at:
10, 100, and 1,000 kPa after 50 deposition/stripping cycles vs. Li metal.
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Cryogenic SEM of Li Morphology

Inert (air-free) transfer of Li working electrodes from the glovebox
to the SEM cryo-transfer arm, where Li samples were plunge
frozen into a liquid nitrogen slush under vacuum, then cooled
during imaging to -100°C with a cryo stage in the FIB/SEM.

Surface of Electrodeposited Li Metal with Cryo-FIB/SEM

HV HFW inag
447 2.00 kV 207 01 1 000 X

Cross-sections of Electrodeposited Li Metal on Cu with Cryo-FIB/SEM

.ko HV HFW
2.00 kV nsum

1 000 kPa
Li porosity changes
- dark (low) vs.
bright (high) region

L i nucleation on Cu
- Many deposits
initiated in bright
region, fewer in

k dark region

2.00 ERNI g 191 ba

HV
2.00 kV

HFW
17.3 pm

mag
12 000 x

WD
7.9 mm

bit
52 °

det
ETD

curr
86 pA

bias
0 V

HV
2.00 kV

HFW mag BEI WD
17.3 m 12 000 x 7.9 mm

tilt
52 ° ETD

det curr

86 aA
bias
0 V

5 pm

tur Dire 'ons iquid Solid Inter • ial acterization

Cryo-FIB has allowed for unperturbed imaging of the Li morphology, deposited under varied contact pressures,
in order to define limitations in cell performance and causes of failure. The next steps will be the preparation of
FIB lift-out TEM samples for atomic-scale imaging and elemental analysis of the solid-liquid interfaces.
Understanding of the electrode as a whole is necessary for defining which regimes to investigate within the
TEM and how statistically relevant those features are to the morphologically heterogeneous material. Future
studies will also use grain mapping with electron backscattered diffraction and energy dispersive x-ray
spectroscopy to identify the grain structure of these metal electrodes and the reactions with the electrolyte.
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