
A Method for Correcting Frequency and RoCoF
Estimates of Power System Signals with Phase

Steps

Felipe Wilches-Bemal Josh Wold Ricky Concepcion Jamie Budai
Sandia National Montana Technological Sandia National Georgia Institute of
Laboratories University Laboratories Technology

Albuquerque, NM Butte, MT Albuquerque, NM Atlanta, GA
fwilche@sandia.gov jwold@mtech.edu rconcep@sandia.gov jbudai6@gatech.edu

Abstract—This paper analyzes how two Kalman Filter (KF)
based frequency estimation algorithms react to phase steps. It is
demonstrated that phase steps are interpreted as sharp changes
in frequency. The paper studies whether the location of the
phase step, within the sinusoidal waveform, has any effect on
the frequency estimate. Because phase steps are not the product
of a permanent change in the underlying frequency, the paper
proposes an algorithm to correct frequency estimates deemed
erroneous. The algorithm makes use of the residual of the KF
to determine when an estimate is incorrect and to trigger a
corrective action in which the frequency estimate is replaced by
an average of the previous values that were considered accurate.
Using synthesized and simulated data with distortions the paper
shows the effectiveness of the correction algorithm in fixing
frequency estimates.

Index Terms—Kalman Filter, Frequency Estimation, Point on
Wave, Phase Jumps

I. INTRODUCTION

Frequency and rate of change of frequency (RoCoF) in a
power system indicate how well the system is behaving. A
stable power system is expected to have very few frequency
fluctuations and RoCoF values near zero most of the time.
Accurate measurement of frequency and RoCoF is crucial for
power system stability and control. Frequency measurements
are used to drive droop controllers and for under frequency
load shedding (UFLS). The work in [1] identified three use
cases for RoCoF: (i) loss of mains protection, (ii) UFLS, and
(iii) synthetic inertia controllers.

In the power system community point on wave (POW)
data refers to the sampled data of power system signals
without undergoing any major processing. These data are the
sinusoidal waveforms sampled at rates on the order of kHz
which are much higher than the traditional SCADA and PMU
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data. Even though the problem of estimating frequency from
POW data has been studied considerably in the past [2], there
is a renewed interest due to the particular challenges facing
the power industry today such as the increase in converter
interfaced generation [1], [3]. For example, the 1200 MW
interruption of solar power event experienced in California
in August of 2016 was partially attributed to faulty frequency
estimates [4].

Frequency and RoCoF estimation of heavily distorted wave-
forms is a challenge. One of the distortions that has received
more attention recently is phase steps (or jumps) [1], [3], [5],
[6]. The work in [3], [5] shows that phase jumps in the POW
data can to lead to erroneous frequency and RoCoF estimates
from measurement equipment such as PMUs.

This paper analyzes the effect that phase steps have on the
frequency estimation of two previously proposed frequency
estimation algorithms [7]—[9]. The algorithms under consid-
eration are based on the Kalman Filter (KF) which is a tool
to optimally estimate the parameters of interest of a signal.
Specifically, one of the methods is based on the Extended
Kalman Filter (EKF) while the other uses the Unscented
Kalman Filter (UKF) to address the nonlinearities of the
process under consideration. The paper considers two type of
phase steps, one of them coming from synthesized sinusoidal
waveforms and the other from simulated data of power system
line faults. The paper shows that phase steps, in which the
underlying frequency is not modified, strongly affect the
frequency estimate of the evaluated algorithms. Specifically,
phase steps cause the estimated frequency to diverge steeply
from the nominal The paper also studies what effect the
location of the phase step within the sinusoidal waveform
has on the frequency estimate. The results show that a phase
step occurring when the sinusoidal waveform is reaching its
maximum (within a period) cause more disruption to the
estimate than when it occurs in other places. Additionally, this
paper proposes an algorithm to correct frequency estimates
when they are deemed inaccurate. In the proposed algorithm
the estimates are determined as inaccurate when the residual
of the KF surpasses a user-specified threshold. The proposed
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algorithm is tested with both the synthesized and the simulated
data and it is shown that it is able to correct all the frequency
estimates. In this work the RoCoF estimate is obtained directly
as the derivative of the frequency estimate so any correction
to the frequency estimate is reflected in the RoCoF estimate.
The corrected frequency and RoCoF signal produced by the
proposed algorithm are clearly preferred for any control action.
The rest of the paper is organized as follows. Section II

presents the framework for process estimation using both the
EKF and UKF methods. Section III shows how frequency
and RoCoF are estimated based on the KF methods from the
previous section and introduces the algorithm for frequency
correction. Section IV shows the result of frequency and
RoCoF estimation and correction for the two sets of data
considered. Finally, Section V presents the conclusions and
future work.

II. KALMAN FILTER FOR FREQUENCY ESTIMATION

A. Signal Model

In a stable power system an adequate model to represent
single phase voltage or current signals is

z(t) = A(t) cos(wt OW) (1)

where w = 27rfo, and fo is the nominal grid frequency with a
value of 60 Hz in North America. Sampling the signal in (1)
with a period of T, yields

zk = A cos(wtk O(tk)) k = 1, . . . , N (2)

with tk = kT„. Note that in (2) the amplitude of the signal
A was assumed constant, a valid assumption for most power
system signals over short time scales and in relatively stable
conditions. Using Euler's equation, relationship (2) can be
rewritten as

zk _ _A (eaPtk+4)(4)) e-3(wtk+4,(tk))) (3)2

Defining four states of complex sinusoidal signals as follows

x1,k = ejwTs X3,k = e jwT's (4)
= AdpkTs+do(tk))

X2,k X4,k = Ae—j(wIcTs +0(4)) (5)

will yield the following state space representation

Xl,k+1 X1,k

Xk =
X2,k+1 = X2 ,k ' X1,k (6)
X3,k+1 X3,k

X4,k+1_ X4,k ' X3,k

which is a set of first order difference equations (or a recursive
relationship) that can be expressed as

Xk+1 = f(xk) (7)

Note that the power system sampled signal in (3) can be
obtained from the states in (6) as

zk = [0 2 0 (8)

B. The Extended Kalman Filter

The EKF estimates the states of a nonlinear system of the
form

xk+1 = f(xk) wk (9)

where xk E 1Rn is the system (process) state vector at the kth
step, f (...) is the vector of functions that define the system's
dynamics, and wk E Rn is the vector with the process noise at
step k. The measurement of the nonlinear system is assumed
to be of the form

Zk = h(xk) Vk (10)

where zk E Rm is the vector with the measurement (obser-
vation) at the kth step, h(...) is the vector of measurement
functions, and Vk E I m is the vector with the measurement
noise at step k. The statistics of wk and vk are assumed to be
known and defined by

E[wk] = 0 E[wkw-kr] = Qk E[wkwj] = 0 for k j
(11)

E[74] =0 E[vo.)/T] = Rk E[Vk = 0 for k j
(12)

E[wkv;] = 0 for all k for all j (13)

Additionally, it is assumed that the process and measure-
ment noise covariances are independent of time, i.e. Qk = Q
and Rk = R V k. The EKF algorithm, which is an adapted
version of the classical KF algorithm for linear systems, is
presented as follows.

Algorithm 1: Extended Kalman Filter

Time Update (or Predictor Update)
i Predict the state:

51k = f (51k-1)2 Linearize the system:

Of (X)

Fk —1 = OX

3 Predict the covariance:

X=5..Ck -1

Pk = Pk-1P k —1FT,1 Q

Measurement update (or filter update)
4 Linearize the measurement:

Hk = 
ank (X) 
Ox

5 Measurement residual:

X=Xk

ek = Zk — h(Xk)

6 Measurement covariance:

Sk = likPTHIT R
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7 Compute the Kalman Gain:

Kk = Pk HITSk 1

8 Update the state:

Xk = 5-Ck Kkek

9 Update the covariance:

Pk = (I — KkHk)Pk

For the system model described in Subsection II-A, there
are four states hence n = 4, the observation is a scalar and
m = 1. Additionally, the linearization of (7) and (8) gives

a
Fk = 

f (X)
ax

X=Stk

Hk = 
ank (X) 
ax

= [0
ac=ic

C. The Unscented Kalman Filter

X2,k

0

[1000

X1,k 0 0
o 1 0

0 0 X4,k X3,k

1 
0 11

(14)

with the weights determined by

l/T/c) L + + (1 — a2 +
vvp-n) w..(c) 1

(23)

(24)

2(L + A) i = 1, ..., 2L (25)

2) The Unscented Kalman Filter (with additive noise): The
UKF addresses the same problem as the EKF. The system
and measurement are again defined, respectively, by equations
(9), and (10). The main difference with the EKF is that the
UKF uses the unscented transform in the time update and
measurement update stages to more accurately predict and
update the state and covariance of the process, respectively.
The UKF algorithm is presented as follows.

Algorithm 2: Unscented Kalman Filter

(15) Time Update (or Predictor Update)
i Compute the sigma points:

1) The Unscented Transform: The unscented transform is
a method of estimating the statistics of a random variable
after a nonlinear transformation is applied to it [10]4121 Let
x E RL be a vector of random variables that undergoes a
nonlinear transformation f (i.e. y = f (x)). Let x and P. be,
respectively, the mean and a the covariance matrix of x then
the unscented transform to compute the statistics of y is as
follows

Xp =

= x + (L + A)P „ i = 1, , L
= — V(L + A)P„ i L + 1, 2L

with

(16)

(17)

(18)

a2 (L + K) — L (19)

Propagating XZ through the nonlinear function f yields

y, = f (X, ) i = 0, , 2L (20)

then the mean and covariance of the output points are deter-
mined by

2L

E wion)yii=0
2L

Py NE wnyi - ÿltyi - ÿfr
i=0

Xk-1 = [ 54-11 5tk-1 + V(L + A)Pk-1,

5tk-1 + A)P k_l]

2 Propagate the sigma points through the process:

X1 = f(Xk—i)

3 Predict the state:

2L

= E k

i=0

4 Predict the covariance:

2L T
13; = E wi(c) [xi,k [xi,k -X k + Q

i=0

Measurement update (or filter update)
5 Propagate the sigma points through the measurement:

2k = h(Xk-1)

6 Update the measurement:

2L

(21) 7 Measurement residual:

(22)

W
(m) 7

i=0

ek = Zk — Zk
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8 Compute measurement covariance and
cross-covariance:

2L T

PZkZk = E vvz,(c) [zzic — Zk [Z1,k + R

PXk Zk

i = 0

2L

i=0

T

(c) 
[eViTk — SCd [ZT,k — Z

9 Compute the Kalman Gain:

Kk = P,ckykP;k14

to Update the state:

Xk = Xk K kek

11 Update the covariance:

Pk = Pk — KkPzkzk KiT

III. FREQUENCY AND ROCOF ESTIMATION AND
CORRECTION OF ESTIMATES

A. Frequency and RoCoF Estimation

Estimating frequency from point on wave data using any
either the EKF and UKF approaches is done by realizing that
states xl,k and x3,k have information related to the underlying
frequency of the observation. The estimated frequency at the
tk instant, denoted fk, can be obtained by1

fs _1 (x1,k + X3,kfk = —27r cos  
2 

(26)

where f, is the sampling frequency (the inverse of Ts). To
estimate the RoCoF this paper uses the simplest approach
which is a finite difference between two adjacent points

fk — fk-1 RoC OFk =
T,

(27)

B. Correction of Estimates

The estimation of frequency by relationship (26) produces
excellent results when the observed signal has the form in (2).
However, power system signals following a disturbance do
not follow the representation in (2). These signals are usually
heavily distorted and, for brief periods of time, may no longer
be sinusoidal waveforms. Estimating frequency under this
circumstances is a challenge and most of the approaches yield
inaccurate results. The main reason for this is that frequency
itself may be ill-defined for a distorted signal. This work
proposes using the residual of the EKF, step 5 in Algorithm 1
(step 7 in Algorithm 2 for the UKF case), as a signal to
determine when fk is inaccurate. In cases where fk is deemed
incorrect the output frequency will be hold to the previous
non-faulty value. The algorithm for frequency correction is

lAn alternative approach to compute the frequency is: fk =Ilin [log(xi,k)]

presented in Algorithm 3. In this algorithm, E is a threshold
value, favg is the average of frequency estimates before tk,
and thold is the minimum time a frequency is held after the
threshold value has been last surpassed. The algorithm uses
a variable, tcont,k, to determine when the frequency estimate
should no longer be corrected. This variable is initialized at
zero. Note that this algorithm is performed at each time step
tk, is only enabled after the EKF or UKF estimator has settled
and the initial value of HoldFlag is False.

Algorithm 3: Frequency Correction Algorithm

if ek < E and HoldFlag is False then
fcorrr  fk

else if ek < e and HoldFlag is True then
if tcont,k < thold then

HoldFlag False
end
frrr = favg

tcont,k = tcont,k-1
e se if ek > e then

frrr favg

Reset time: t-cont,k = 0
HoldFlag <— True

end

T,

IV. RESULTS FOR POW DATA WITH PHASE JUMPS

A. Synthetic POW Data

This section presents the results of estimating frequency of
point on wave data with phase jumps. These data, referred to
as synthetic data, was developed as follows

s(t) = A cos(cot + H (t)) (28)

where OH (t) is a Heaviside step defined as

OH (t) = 
{Ostep, if t > tstep

(29)
0, otherwise

and tstep was varied such that the phase steps occurred at
different instants of the sinusoidal waveform and around the
same starting time of 2 seconds. The phase steps considered
were of -0.3 rad (i.e. Ostep = —0.3) and this value was selected
because it is the strongest recommended value for this type of
signal in ref. [1]. The sampling rate of this data is set to 4.8
kHz (T, = 208.33µ8). The values selected for the correction
algorithm are c = 0.018, and thold = 50 ms (3 cycles).

Fig. la shows the synthesized POW data for the case where
the phase jumps occur right when the sinusoidal waveform
passes through the origin (or near 0°). On a different time
scale Figs. lb, lc, and 1 d respectively show the residual,
the estimated frequency with its correction and the estimated
RoCoF with its correction for both the EKF and UKF methods
analyzed in this work. The residuals for both the EKF and
UKF in Fig. lb spike immediately after the phase jumps
occurs and they both reach relatively high values for about
30 ms after the event. Fig. lc shows the estimated frequency
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by both the EKF and UKF methods as well as the corrected
values. These results show that the considered phase jump is
interpreted by the frequency estimators as a big drop in the
frequency estimate. The corrected frequency estimates show
that the proposed algorithm is able to fix the estimates and
completely avoid the large frequency drops. Fig. ld shows the
estimated and corrected RoCOF. These results are obtained
from the signals in Fig. lc using the relationship in (27). Note
that the corrected results of frequency and ROCOF would
be preferred for any control application that uses either the
frequency such as load shedding, or RoCoF such as synthetic
or virtual inertia.
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Fig. 1: Frequency estimation when the step in phase, of -0.3 rad, occurs
when the sinusoidal waveform is passing through the origin in an upward
trend (equivalent angle of 00).

Figs. 2 and 3 show respectively the same results as Fig. 1
for the cases where the waveform goes in an upward trend.
Figs. 2 shows the case when the step in phase occurs for when
the waveform is reaching about 70% of its amplitude (roughly
45°), and Fig. 3 the case when waveform is about to reach its
maximum (roughly 90°). The results show that a phase jump
occurring near the peak of the sinusoid yield a larger frequency
drop in the uncorrected estimate. The results also show that
the proposed corrector is able to identify and remove these
large jumps in estimated frequency.

B. Simulated POW Data

This section presents the results of frequency estimation
and correction for waveforms exhibiting phase jump-like
distortions. The data presented here was obtained using the
Simscape toolbox from MATLAB/Simulink

Fig. 4a shows a distorted waveform that is the product of
a line-to-line fault occurring at an adjacent bus in a power
system. The fault occurred at 5 seconds, had a duration of
10 ms, and was between phases A and B. The signal to
analyze corresponds to phase B and was selected because of
the distortion it exhibited. Fig. 4b shows the residual ek for
the EKF and UKF approaches for the signal in Fig. 4a. The
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Fig. 2: Frequency estimation when the step in phase, of -0.3 rad, occurs when
the sinusoidal wavefomi is reaching about 70% of its amplitude in an upward
trend (equivalent angle of 45°).
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Fig. 3: Frequency estimation when the step in phase, of -0.3 rad, occurs
when the sinusoidal waveform is reaching its maximum in an upward trend
(equivalent angle of 90°).

residual of both frequency estimation approaches increases
right when the fault occurs and its value continues to be
elevated for about 40 ms after the fault is cleared. Figs. 4c
and 4d show, respectively, the initial and corrected frequency
and RoCoF for both KF methods. These results show that
the distortions in the sinusoidal waveform in Fig. 4a caused
by the occurrence of the fault and its clearance are estimated
as a steep increase followed by a considerable decrease in
frequency. The corrected estimates using Algorithm 3 show
that it is able to completely ride through this event and produce
a steady frequency estimate. Note that for a control application
that uses either the frequency or the RoCoF as a signal the
corrected estimate is preferable; it is better to not act than to
act improperly.
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Fig. 4: Frequency estimation for a waveform obtained from a line to line fault
with duration of lOms.

Fig. 5a shows a distorted waveform obtained from a line-
to-line fault between phases A and B at a nearby bus. The
fault was cleared after 50 ms and the waveform in the figure
corresponds to phase C. Figs. 5b, 5c, and 5d respectively show
the residual, the estimated frequency with its correction and
the estimated RoCoF with its correction for both of the KF-
based methods analyzed in this research. The results of these
figures follow the same trend as those presented previously:
(i) for both the EKF and UKF methods the residual spikes
when the disturbance occurs, (ii) the frequency estimate for the
distortion is reflected in a higher value followed by a drop, and
(iii) the correction algorithm proposed is able to successfully
correct the frequency estimate for both KF approaches.
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Fig. 5: Frequency estimation for a waveform obtained from a line to line fault
with duration of 50ms.

V. CONCLUSIONS AND FUTURE WORK

This paper assesses the impact of phase steps on Kalman
Filter frequency estimation algorithms. Both the EKF and UKF
were considered. The paper shows that sudden phase jumps
can be falsely identified as large frequency fluctuations. Based
on the residual of the KF methods, the paper proposes a
correction technique to identify when the frequency estimate is
incorrect. For incorrect estimates the paper proposes a solution
by holding the estimate to a previous value that was deemed
correct. The performance of the proposed correction algorithm
was demonstrated using both synthetic and simulated distorted
waveforms.
A continuation of this work will include analyzing the

frequency estimation techniques used here and the proposed
correction algorithm with different data from other type of
events such as load connection and faults to ground. Future
work will also include studying how the frequency corrector
can be improved by using an adaptive threshold.
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