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3 Aerostructures: Additive Manufacturing

Adva ntages:

• Optimized structures

• Multifunctionality

Consequences:

• Nonlinearities

• Fatigue

• Complexity

3

BOEING 777X

UNIVERSITY
0F TWENTE.



Technical Gaps: Material Behavior Due to Vibration
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I Technical Gaps: Global Manifestation
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P : inertial, Fnd: damping, Fnr:

Stiffness

• Most SHM assume linear behavior

• Nonlinear parameters sensitive to
damage precursors

Carrella & Ewins, Mechanical Systems and Signal Processing, 2011

Haynes et al., IMAC, 2019
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Linear system

Quadratic damping (c2>0)
Cubic stiffness (k3>0)

Nonlinear inertia (m3>0)
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Approach: Connecting Nonlinearities



Approach
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Approach
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Approach
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Experiments: Materials Characterization
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Experiments: Materials Characterization
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Experiments: Setup

Mode 1 col

Modell 5.0 • oh

14 Habtour et al., ISMA, 2018
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Results: Linear vs Nonlinear Dynamics
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HIGH CYCLE FATIGUE VIEWER

Results: Harmonics A17075

high order harmonics show changes from the
pristine conditions, but no resonance change

Super-harmonics can be used to track damage
precursors
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Scalmally: >75k cycles

NONLINEAR HARMONICS VIEWER
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Results: Material Degradation

• Al 7075-T6: minor fatigue cracking around 300.000 cycles
• Scalmalloy: beginning fatigue cracks around 150.000 cycles
• Crack initiated at surface could be due to boundary conditions
• Machining pattern in Scalmalloy may influenced direction of crack growth
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Conclusions

Nonlinear parameters are sensitive to evolution of fatigue damage:
• Effective stiffness, high harmonics, phase
• Energy dissipation can be calculated

Al 7075 fatigue life is much higher than Scalmalloy, but:
• Scalmalloy results are more repeatable
• Nonlinear parameters can be more effective
• Prior understanding of the mechanics is required

Future Work:
• Relate parameters to materials micromechanics, mathematically
• Additional material characterization: AFM, nano-indentation, ...
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