This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-

MPI Tag Matching Performance
on ConnectX and ARM

W. Pepper Marts

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Co-Authors

Matthew G. E. Dosanjh

Center for Computational Research, Sandia National Laboratories

Whit Schonbein

Center for Computational Research, Sandia National Laboratories

Department of Computer Science, University of New Mexico

Ryan E. Grant
Center for Computational Research, Sandia National Laboratories

Department of Computer Science, University of New Mexico

Patrick G. Bridges

Department of Computer Science, University of New Mexico

3

Introduction

With exascale, message matching could become a major factor of HPC application performance

Network vendors have made significant improvements to MPI tag matching performance
Leveraging both software and hardware

The performance characteristics of these approaches are often not well-studied

More marketing material than published information

In this paper, we quantify the impact of a new vendor matching scheme

4

Background

Point-to-point send-receive 1s an important component of many applications

MPI Message Matching will potentially be a problem for exascale applications

Exascale developers expect to use MPI in a multithreaded manner

Bernholdt, David E., et al. "A survey of MPI usage in the US exascale computing project." Concurrency and Computation: Practice and
Experience (2017): e4851.

Multithreaded MPI creates problematic matching behavior

Schonbein, Whit, et al. "Measuring multithreaded message matching misery." European Conference on Parallel Processing. Springer, Cham,
2018.

5

Background

Traditional MPI implementations have used a pair of linked lists
Posted Recetve Queue (PRQ)
Unexpected Message Queue (UMQ)

Recent optimizations have used a hashed-binning solution
Intel’s PSM2 driver

Mellanox’s ConnectX-5 driver

¢ | Methodology — Experimental Platform (Hardware)

Astra Research Cluster

(e]

o

Worlds first petascale ARM cluster

36 compute racks, each containing 18 HPE
Apollo 70 chassis

4 compute nodes per chassis

Two 28-core Cavium ThunderX2 CN9775 chips G, |
operating at 2GHz per node g’ {

4x EDR (100Gb/s) Infiniband network with
Mellanox ConnectX-5

Three-level fat tree topology

Methodology — Experimental Platform (Matching) _

Matches based on a single 64-bit tag that contains a full set of matching data including
MPI tag

MPI rank
MPI context ID

There is both a hardware and a software matching layer
Hardware matching 1s only used for larger messages

Hardware matching is effective when the time it takes to match i1s less than the time spent moving data

Software layer 1s open source as part of Open UCX
Hash binning system with 1021 bins
Hash function that XOR’s the upper and lower 32-bits of the UCX tag modulo 1021 I

Hardware Flags and Thresholds
UCX_RC_MLX5_TM_ENABLE and UCX_DC_MLX5_TM_ENABLE C

UCX_TM_THRESH (default threshold 1s 1KiB)

Methodology — Basic Microbenchmarks _

Microbenchmark results were generated using a modified version of the OSU benchmark suite

Modifications were made to allow better analysis of the effects of the message matching queue [
depth and ConnectX-5s tag binning system

Changes to help evaluate the effect of the matching queue:
Clear cache between iterations
Prepost all receives, including a configurable number of unmatched receives

This allows us to experiment with the amount of time spent in the matching engine

We will refer to the number of these extra unmatched receives as the queue depth

9

Methodology — Microbenchmark Extensions

Changes to help test the specifics of the ConnectX-5 and UCX’s binning system:
We added a configurable binning collision rate (0%, 1%, 10%, 100%b)

We know that the bin assigned to each receive is chosen based on its tag modulo 1021

When we create the recetves for the configurable message queue, we choose tags such that there is a certain
percent chance of it being placed in the same bin as the matched receives

Wildcard Tests (Transient or Permanent)

We also created a modified version to test how the hardware matching layer handles wildcards

“Transient” test where an MPI_ANY_TAG receive is posted and matched before any timing is done for the
benchmark

“Permanent” test where an MPI_ANY_TAG receive is posted and matched after all timing 1s done for the
benchmark

o | Methodology — Microbenchmark Setup

Configuration Parameters for Modified OSU Benchmarks
Collision Rates : 0%, 1%, 10%, and 100%
Message Size : 1B to 1MiB by powers of two
Queue Depth : 1 to 32k by powers of two
Hardware Matching : enabled or disabled

Separate runs for each wild card

Data points presented are the mean and standard deviation of twenty runs

Methodology — Applications and Proxies _

We also ran applications to evaluate the effects of the hardware matching on a more realistic,
optimized communication pattern

LULESH is a hydrodynamics proxy application from Lawrence Livermore
FDS is a fire dynamics simulator from NIST

These were run with three different matching techniques
Software only
Software with hardware
Software with one bucket (linked list)

Data points presented are the mean and standard deviation of all 5 runs

2 | Results — 0% Collision Rate for IB and 4KiB Messages

% >
o [oX
@ 0
=] S
£ c
-+ —
© S
= 2
© ©
C C
© (48]
om m

0
7O % @ 752 8 R R I NN

Receive Queue Length Receive Queue Length
HW Matching Enabled —&— HW Matching Disabled — HW Matching Enabled —&— HW Matching Disabled

3 | Results — I% Collision Rate for IB and 4KiB Messages

% =
o o
@ @
=] =]
£ ol o
-+]
° °
= =
© ©
C C
© ©
om om

0
79 ¥ S8 Zp G s 9 G

Receive Queue Length Receive Queue Length
HW Matching Enabled —&— HW Matching Disabled — HW Matching Enabled —#— HW Matching Disabled

4+ | Results — 10% Collision Rate for |B and 4KiB Messages

% =
o o
@ @
=] =]
£ ol o
-+]
° °
= =
© ©
C C
© ©
om om

0
797&76,%6‘7@(99% 76‘“99@

Receive Queue Length Receive Queue Length
HW Matching Enabled —&— HW Matching Disabled — HW Matching Enabled —#— HW Matching Disabled

s | Results — 100% Collision Rate for IB and 4KiB Messages

% =
o o
@ @
=] =]
£ ol o
-+]
° °
= =
© ©
C C
© ©
om om

. 0
797&76,%6‘7@(99% 76‘“99@

Receive Queue Length Receive Queue Length
HW Matching Enabled —&— HW Matching Disabled — HW Matching Enabled —#— HW Matching Disabled

16

Results — Wildcard Test

m
Q
o0
3
S
e
2
©
c
©
m

Message Size (B)

No Wildcards —&—

Wildcard Existed

Wildcard in Queue —&—

|7

Results — LULESH

LULESH

Software Matching
Software+Hardware
Software One Bucket

6 7

Cores (Nodes)

18

Results — FDS

Fire Dynamics Simulator

Software Matching
Software+Hardware
Software One Bucket

Cores (Nodes)

19

Results — Bandwidth vs

w
Q
o
=
=
O
=
S
c
©
m

. Message Size (Hardware Off)

Message Size (B)
1% 10% —&— 100% —v—

20

Results — Bandwidth vs. Message Size (Hardware On)

@
Q.
a8
2
S
S
=
©
c
©
m

Message Size (B)
1% ‘ 10% —&— 100% —v—

