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Presented herein is a robust approach that allows the marine renewable energy
industry to maximize power output when evaluating the potential environmental
effects of marine hydrokinetic (MHK) devices. A Spatial Environmental
Assessment Tool (SEAT) has been developed that applies metocean models to
various array layouts to examine the tradeoff between power extraction and
potential environmental risk.

Metocean: waves,
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Figure 1. Schematic for estimation
of risk parameters using the Spatial
Environmental Assessment Tool (SEAT).
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A wave, circulation, and sediment transport model was developed for a case
study site along the coast of Oregon. Wave propagation and simulated wave
energy converters (WECs) were modeled using the Simulating Waves in the
Nearshore (SNL-SWAN) module developed by Sandia National Laboratories
(SNL) and incorporated into the open source Delft3D framework (Gerritsen et al.
2008; Ruehl et al. 2015).

RISK METRICS
Sediment Mobility. Changes in bottom shear stress can either increase or
decrease sediment erosion or accretion, depending on the relation of the modeled
shear stress to the critical shear stress associated with the sediment layer at the
sediment water interface.

Bed Elevation. Physical processes such as tides, waves, and sediment transport
result in a change in effective seabed elevation relative to that of a quiescent
ocean. The presence of WECs can influence variability in seabed elevation and
affect benthic habitats.

Larval Motility. Changes in bottom velocity can either impede or improve larval
motility, depending on the relation of the modeled bottom velocity to the critical
velocity associated with larval motility.
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Figure 2. Risk maps for changes to sediment mobility, bed elevation, and larval motility.
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Risk metrics were developed for each of the above parameters. The metrics
probabilistically take into account environmental changes associated with wave
events over climatological scales.
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Metocean Cases

Jesse Roberts,
Sandia National Laboratories

SNL conducted a comprehensive analysis of expected wave conditions on the
Oregon coast using 7 years (2005-2011) of modeled wave conditions. The number
of events analyzed was then reduced to a computationally tractable set of events
using a k-means clustering analysis similar to the methodology used in the Wave
Energy Prize (Bull and Dallman 2017; Jones et al. 2018).

Cases of Array Layout

Eight types of WEC array configurations were examined using the SEAT model
framework. The number of WECs in the array was fixed to 28 elements, with
4 elements in the horizontal and 7 elements in the vertical. Inter-element spacings
were then varied, while ensuring that the outer boundary of the WEC array
remained consistent over all configurations.
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RISK AND POWER EVALUATION
The 4 x 4 array absorbs the
lowest amount of power due
to its tight cluster, which
causes neighboring elements
to undergo increased wave
shadowing resulting in
lower power absorption.
Conversely, the array layout
with the largest inter-element
spacing, the 16 x 6 array, has
the largest power absorption.

CONCLUSIONS

Figure 3. Power
absorption as a
function of array
geometry over
the annual set of
wave cases.
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Figure 4. Effect of array shape on power extraction, risk of
sediment mobility, and larval motility.
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This work demonstrates the utility of SEAT in informing stakeholders, regulators,
and developers about the benefits of a data-driven analysis that takes into account
characteristics of array layouts, site-specific modeling, and knowledge of wave
dynamics to yield array shapes and layouts that satisfy multiple, often competing,
requirements.
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