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31 Multi-scale, Multi-physics Modeling for PV Reliability

« Goal: A modeling capability to accurately predict module lifetime
« Applicable to multiple PV scales: From interconnects to full modules
* Incorporating multiple degradation physics: Mechanical stress, thermal stress,
materials effects, and more
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51 A Full Module Mechanical Model with Sensitivity Analyses

« Capability: Beginning from a module design and Bill of Materials (BOM)- of
any architecture, real or prototype- generate an accurate model of module
response to mechanical load

* Purpose and applications:
« Assessment of designs in arbitrary environments
« Parametric design and material choice optimization
« Derivation of internal-scale boundary conditions for accelerated testing

displ_y (meters) 0 T T T T T — —
i i i | i )

0.0006 ! : ! | ) B T
-0.0038 e I I ol ' > R s G
-0.0082 i i | AR TON, | i

-0.0126 g L e e st B L e R

-0.0171

S W/ CRE WA 1 b ) @ i, - GREER M | SRt R

sigl (Pa)

o
3635¢+007 s FAL L ! I
1.430e+oc?H Y e e 7y s e s N R T

-6.758e-+006 a* o Measured, 24 kPa NN
-2 831e+007 A0V G- —Simulated, 24 kPa | -———---NJHPS
¢ i -©- Measured, 1.0 kPa i &
s | — Simulated 1.0 kPa !

-4.987e+007

08 06 04 02 00 02 04
Distance from module center (m)

FEM representation validated against deflection vs.
load comparisons

Module design and Bill
of Materials (BOM)




6

A Full Module Mechanical Model with Sensitivity Analyses

* Modeling capability was demonstrated for a 60-cell c-Si module and a large
format glass-glass module, and validated against experimental deflection vs.
load data

« Input parameters (materials, dimensions) were varied parametrically to
generate uncertainty estimates and analyze sensitivities

« Workflow is in theory applicable to any module and load scenario
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SPARK: Highly instrumented modules for simulation model
s 1 validation and environmental characterization

« Full module simulation models showed excellent agreement against uniform
pressure loading test data, but:
» Is external deflection vs. load enough to validate a model?
» |s there a way to measure real fielded module mechanical loads (other
than uniform pressure)?
* Proposed solution: Embed mechanical instrumentation- strain gauges- into
modules to collect internal data to validate internal quantities and assess
ability to record mechanical exposures in the field
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SPARK: Highly instrumented modules for simulation model
91 validation and environmental characterization

* Project workflow:
1. Design and build instrumented modules
2. Conduct laboratory testing on instrumented modules
3. Correlate internal data output to simulation model predictions and
conventional external measurements (lasers, image correlation, etc.)
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SPARK: Highly instrumented modules for simulation model
10 1 validation and environmental characterization

» Current status: Designs delivered to D2 Solar for fabrication
« Discussing implementation considerations (i.e. wire routing, process
steps to accommodate gauge placement)
* 4 modules commissioned (3 instrumented, 1 control)
» Corresponding module FEM under development to match frame designs etc.
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121 Incorporation of encapsulant viscoelasticity Ii

» Current effort: Calibrate Sandia’s Universal Polymer Model to the viscoelastic
and thermal expansion properties of encapsulant polymers

« Purpose and applications:
 Include viscoelastic polymer behavior to capture the time dependence of
the encapsulants’ mechanical response
* Include thermal expansion measurements through transitions
temperature to capture behavior in glassy and rubbery state
* Influential to modeled thermal-mechanical response of cells,
interconnects, and interfaces
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131 Incorporation of encapsulant viscoelasticity

* Measure representative samples
« Thermal expansion
 Viscoelastic behavior
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141 Incorporation of encapsulant viscoelasticity

 Fit mathematical model to measured data
* Prony series fit to complex master curve
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15 1 Incorporation of encapsulant viscoelasticity

« Validate fit against simple, independent experiments exercising properties
» Creep tests on encapsulant samples at varied temperatures
« Cantilever beam sandwich geometry to test thermal expansion

» Allows reconstruction of master curves and thermal expansion behavior
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16 1 Incorporation of encapsulant viscoelasticity

* Measure representative samples
« Fit mathematical model to measured data
« Validate fit against simple, independent experiments exercising properties
- Implement and validation in finite element models
« Add fit parameters to Universal Polymer Model framework
» Construct simplified FEM of test geometries
« Upon validation, model is ready for application to module geometries
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18 1 A multi-physics mini-module modeling platform

* A high-fidelity mini-module model is under development to integrate
modeling efforts to date
* Mechanical loading
« Thermal effects (expansion mismatches and property changes)
* Coupled electrical thermal heating
« High fidelity material and interface adhesion models
* Models Combined Accelerated Stress Testing (C-AST) mini-modules for

validation comparisons
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