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3  Multi-scale, Multi-physics Modeling for PV Reliability

• Goal: A modeling capability to accurately predict module lifetime
• Applicable to multiple PV scales: From interconnects to full modules
• Incorporating multiple degradation physics: Mechanical stress, thermal stress,

materials effects, and more
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5 A Full Module Mechanical Model with Sensitivity Analyses

• Capability: Beginning from a module design and Bill of Materials (BOM)- of
any architecture, real or prototype- generate an accurate model of module
response to mechanical load

• Purpose and applications:
• Assessment of designs in arbitrary environments
• Parametric design and material choice optimization
• Derivation of internal-scale boundary conditions for accelerated testing
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6  A Full Module Mechanical Model with Sensitivity Analyses

• Modeling capability was demonstrated for a 60-cell c-Si module and a large
format glass-glass module, and validated against experimental deflection vs.
load data

• Input parameters (materials, dimensions) were varied parametrically to
generate uncertainty estimates and analyze sensitivities

• Workflow is in theory applicable to any module and load scenario
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8  

SPARK: Highly instrumented modules for simulation model
validation and environmental characterization

• Full module simulation models showed excellent agreement against uniform
pressure loading test data, but:
• Is external deflection vs. load enough to validate a model?
• Is there a way to measure real fielded module mechanical loads (other

than uniform pressure)?
• Proposed solution: Embed mechanical instrumentation- strain gauges- into

modules to collect internal data to validate internal quantities and assess
ability to record mechanical exposures in the field
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SPARK: Highly instrumented modules for simulation model
9 validation and environmental characterization

• Project workflow:
1. Design and build instrumented modules
2. Conduct laboratory testing on instrumented modules
3. Correlate internal data output to simulation model predictions and

conventional external measurements (lasers, image correlation, etc.)
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SPARK: Highly instrumented modules for simulation model
10  validation and environmental characterization

• Current status: Designs delivered to D2 Solar for fabrication
• Discussing implementation considerations (i.e. wire routing, process

steps to accommodate gauge placement)
• 4 modules commissioned (3 instrumented, 1 control)

• Corresponding module FEM under development to match frame designs etc.

Module 2: Confirm module symmetry and X-strain quantities
Module 3: Assess effect of 1-box, help confirm symmetry

Module 4: Assess effect of placement layer, confirm symmetry, 2 axis behavior
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12  Incorporation of encapsulant viscoelasticity

• Current effort: Calibrate Sandia's Universal Polymer Model to the viscoelastic
and thermal expansion properties of encapsulant polymers

• Purpose and applications:
• Include viscoelastic polymer behavior to capture the time dependence of

the encapsulants' mechanical response
• Include thermal expansion measurements through transitions

temperature to capture behavior in glassy and rubbery state
• Influential to modeled thermal-mechanical response of cells,

interconnects, and interfaces
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13 1 Incorporation of encapsulant viscoelasticity

• Measure representative samples
• Thermal expansion
• Viscoelastic behavior
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14 1 Incorporation of encapsulant viscoelasticity •
• Measure representative samples
• Fit mathematical model to measured data

• Prony series fit to complex master curve
• Thermal expansion coefficient (a,01) above and below Tg
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15  Incorporation of encapsulant viscoelasticity

• Measure representative samples
• Fit mathematical model to measured data
• Validate fit against simple, independent experiments exercising properties

• Creep tests on encapsulant samples at varied temperatures
• Cantilever beam sandwich geometry to test thermal expansion

• Allows reconstruction of master curves and thermal expansion behavior
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16  Incorporation of encapsulant viscoelasticity

• Measure representative samples
• Fit mathematical model to measured data
• Widate fit ciAinct simple_ indepenrlinnt evneriments exercising properties
• Implement and validation in finite element models

• Add fit parameters to Universal Polymer Model framework
• Construct simplified FEM of test geometries
• Upon validation, model is ready for application to module geometries
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18  A multi-physics mini-module modeling platform

• A high-fidelity mini-module model is under development to integrate
modeling efforts to date
• Mechanical loading
• Thermal effects (expansion mismatches and property changes)
• Coupled electrical thermal heating
• High fidelity material and interface adhesion models

• Models Combined Accelerated Stress Testing (C-AST) mini-modules for
validation comparisons
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