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Predicting physical properties
of bio-renewable molecules in
search for a drop-in Jet-A fuel
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Background

* 44,000 flights either take off, or land in the U.S daily

* In 2017,25,212,000 hours were logged by General Aviation aircraft

* InApril of 2019, 650,732 miles were flown, in the U.S by commercial aircraft

* In the calendar year ending April 2019, commercial aircraft flew [8.17 million miles, in the U.S
* In 2016, airlines spent |35 billion dollars on fuel

These numbers represent...

* An opportunity to decrease emissions by creating more fuel
efficient aviation fuels

* An opportunity to introduce better performing fuels (lower
viscosity, better cold flow)

* An opportunity to decrease fuel costs

This can be accomplished by looking at a wide variety of fuel
components, especially bio-renewable components, such as
from the terpene family
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Properties important to aviation fuel _

Performance
* Specific energy is the amount of energy available per kg (>42.8)

* Energy density is the amount of energy available per liter e

Left main tank 9,560 64,000 Main tank
Right main tank 9,560 64,000

If Specific energy increases, fuel accounts for less weight, [ com it |
and more weight can be added (ie. more passengers, or e

luggage)
If Energy density increases, less volume of fuel is needed,
and more volume opens up (ie. more passengers, or

luggage)

Operability
Freezing point (< -40 °C)
Kinematic viscosity (-20°C <8 cSt; -40°C <12 cSt)
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If freezing point is too high, fuel may freeze in flight
If viscosity is too high, fluidity becomes a problem




What type of molecules are

Jet fuel can contain 1000s of molecules
* Avoid oxygenates

* Avoid unsaturated double bonds

* Limit aromatic content

iso-Alkanes
Property n-Alkanes (Weakly
Branched)
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High Performance Fuels (HPF)

* These are natural products, which have properties that are favorable for blending into aviation fuel
* These come from biomass (lignin), small organisms (e.coli), and other organisms

*  While these molecules can still not be produced in significant quantities, genetic engineering, and
other techniques are being used to speed up their production
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Methodology _

ED and SE calculations Solid-Liquid-Equilibrium (SLE) equation
" : AHSU\ T=T . ACSE T T—Tm
* Ab-initio calculations CBS-QB3 kallc = exp {(RTnik) . k :" lln (T_mk) = Tk] + 1}

* Density and HOV is calculated
* using the SAFT-y-mie EoS

Parameters required

« AH3$! (enthalpy of fusion)
. AC;,IC (heat capacity term)
* Tmi (melting point)
* yl (calculated through SLE benzene + naphthalene
SAFT-y-mie EoS ‘ = 5359"64

O Ward, 1926
O Ward, 1926

Predicted vs Measured Specific Energy, CBS-QB3
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Methodology cont.

SAFT-y-mie EoS Viscosity: super TRAPP

T M1/2 _
1T,0) = ey G, ph) [Mrefl/zl g2 23y,

e g and h are obtained from empirical expressions
* M is the molecular weight of the fluid

* Xp s a correction factor, which corrects for non-
correspondence

* The reference fluid chosen is propane

* Typical errors for binary systems of ~ 5.0%

Group contribution method
Each group has unique €, o, A’
Parameters between different groups are

obtained through combining rules
A = gideal 4 gmono 4 ,chain 4 sassoc



Energy density and specific

Molecule

Formula

pinane

cis-carane

sabinane

p-menthane

epi-isozizane

alpha-cedrane

prespatane (saturated)

caryophyllane

bisabolane

farnesane

pristane

phytane

squalane

ladderane[2]

ladderane[3], syn-

ladderane[3], anti-

ladderane[4]

ladderanel51

Jet-A

HPF threshold

Mol. Weight
g/mol

Specific
Energy MJ/kg

Energy Density
MJ/L

36.56

3544 347123

35.14 3458
38.75 -
39.62 3941
38.94 -
37.16 37.01
35.99 35.64
33.89
34.24
3453

energy of HPF molecules

oi-Cedrane

HaC

Farnesane

1
CHy

Sabinane Epi-sozizane

Hydrogenated prespatane Bisabolane i i

Caryophyllane

L adderane[2] H H

6 syn-Ladderane[3]

] ladderane[4]

anti-Ladderane[3]

HEEEN

ladderane[5]
Phytane




Cis-decalin + naphthalene

SLE cis-decalin + Naphthalene Viscosity of cis-decalin + naphthalene

#

co

O
=]
L
g
©
—
ob]
=
=
(4H]
=

Viscosity, mm?/s

—— SAFT

— CPA -10°C
O Tsuji, 2007 '

O Gupta, 1991

0.1 0.2 0.3 0.4 0.5 0.6 0.7 L 3 ; ; : 0.4 0.6
X, cis-decalin X, cis-decalin




&
(=]
El;
g
©
i
QD
&
=
Q
F

|
o
(=]

Cis-decalin + methylcyclohexane

SLE of cis-decalin + methylcyclohexane

0.4 0.6
X, cis-decalin

Viscosity, mm?/s
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Viscosity of cis-decalin + methylcyclohexane
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---- -20°C 20°C
== "C 30°C
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— 30°C

X, cis-decalin

Viscosity is limiting, but no very much so
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Cis-decalin + cyclohexane

SLE cis-decalin + cyclohexane Viscosity of cis-decalin + cyclohexane
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Temperature (°C)

Cis-decalin + limonene

SLE cis-decalin + limonene
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Cis-decalin + a-pinene

SLE cis-decalin + &-pinene
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Conclusions

* Cyclic alkanes can complement and augment the physical properties of other jet fuel
components, making them valuable jet fuel molecules

* Theoretical methods are available, which can accurately describe the physical properties
of fuels over wide compositional ranges

* The addition of small amounts of decalin can lower the freezing point by interacting

with cyclohexane

* Methylcyclohexane has a pure freezing point of -130 °C. Including it can potentially be
beneficial to the overall freezing point of fuel.

* The viscosity of decalins limit their use in jet fuel

* Their energy content (SE, ED) are comparable to Jet-A



