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Background

• 44,000 flights either take off, or land in the U.S daily
• In 2017, 25,212,000 hours were logged by General Aviation aircraft
• In April of 2019, 650,732 miles were flown, in the U.S by commercial aircraft
• In the calendar year ending April 2019, commercial aircraft flew 18.17 million miles, in the U.S
• In 2016, airlines spent 135 billion dollars on fuel

These numbers represent...
• An opportunity to decrease emissions by creating more fuel

efficient aviation fuels
• An opportunity to introduce better performing fuels (lower

viscosity, better cold flow)
• An opportunity to decrease fuel costs

This can be accomplished by looking at a wide variety of fuel
components, especially bio-renewable components, such as
from the terpene family
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Properties important to aviation fuel •

Performance
• Specific energy is the amount of energy available per kg (>42.8)
• Energy density is the amount of energy available per liter

If Specific energy increases, fuel accounts for less weight,
and more weight can be added (ie. more passengers, or
luggage)
If Energy density increases, less volume of fuel is needed,
and more volume opens up (ie. more passengers, or
luggage)

Operability
• Freezing point (< -40 °C)
• Kinematic viscosity (-20°C <8 cSt; -40°C <12 cSt)

If freezing point is too high, fuel may freeze in flight
If viscosity is too high, fluidity becomes a problem

Tank Gallons Pounds*

Left main tank 9,560 64,000

Right main tank 9,560 64,000

Center tank 26,100 174,900

Total 45,200 302,900

* Usable fuel at level attitude
Fuel density = 6.7 pounds per U.S. gallon.
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What type of molecules are in aviation fuel

Jet fuel can contain 1000s of molecules
• Avoid oxygenates
• Avoid unsaturated double bonds
• Limit aromatic content
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High Performance Fuels (HPF) •

• These are natural products, which have properties that are favorable for blending into aviation fuel
• These come from biomass (lignin), small organisms (e.coli), and other organisms
• While these molecules can still not be produced in significant quantities, genetic engineering, and
other techniques are being used to speed up their production
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ED and SE calculations

• Ab-initio calculations CBS-QB3
• Density and HOV is calculated
• using the SAFT-y-mie EoS
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Methodology

Solid-Liquid-Equilibrium (SLE) equation

AFIk1)T—Tmk (T T—Tmk]
XkYlic = expl(—   tn + I

RTmk Tmk)

ps k [i

Parameters required

• Alliscl (enthalpy of fusion)

• Aqk (heat capacity term)
• Tink (melting point)

• yk (calculated through
SAFT-y-mie EoS
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Methodology cont. •

SAFT-y-mie EoS

• Group contribution method
• Each group has unique E, a, X'
• Parameters between different groups are
obtained through combining rules

• 
A aideal amono achain aassoc

Viscosity: superTRAPP

Ti(T , p) = Tire f (T-9 Ph) [I:elf/12/21 g1/211-213Xri

• g and h are obtained from empirical expressions
• M is the molecular weight of the fluid
• ,y7i is a correction factor, which corrects for non-

correspondence
• The reference fluid chosen is propane
• Typical errors for binary systems of - 5.0%



Energy density and specific energy of HPF molecules

Molecule Formula Mol. Weight
g/mol

Specific
Energy MJ/kg

Energy Density
MJ/L

. inane
cis-carane
sabinane
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.res .atane saturated
car o.h !lane
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.h tane
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ladderane 3 , s n-
ladderane 3 , anti-
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et-A
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Calc. Lit.' Calc. Lit.'
C10H1 18 138.25
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44.40 38.14
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206.37 42.72 38.75
206.37 42.79 42.74 39.62 39.41
206.37 43.27 38.94
208.39 43.72 43.54 37.16 37.01
210.40 43.76 43.36 35.99 35.64
212.42 43.95 33.89
268.52 43.84 34.24
282.56 43.84 34.53
422.83 43.63 35.17

C61-1 10 82.14 44.98 44.60 42.37 42.38
C81-1 12 108.18 44.73 44.30 48.50 46.38
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Cis-decalin + naphthalene •
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Cis-decalin + methylcyclohexane •
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Cis-decalin + cyclohexane •
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Cis-decalin + limonene
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Cis-decalin + a-pinene •
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Conclusions ■

• Cyclic alkanes can complement and augment the physical properties of other jet fuel
components, making them valuable jet fuel molecules
• Theoretical methods are available, which can accurately describe the physical properties
of fuels over wide compositional ranges
• The addition of small amounts of decalin can lower the freezing point by interacting
with cyclohexane
• Methylcyclohexane has a pure freezing point of -130 °C. Including it can potentially be
beneficial to the overall freezing point of fuel.
• The viscosity of decalins limit their use in jet fuel
• Their energy content (SE, ED) are comparable to Jet-A


